I am trying to get the below output in scheme language. Could anybody let me know where am I wrong? I want to add .z at the end, not getting it. How can I?
code:
(define (countup n)
(define (help i)
(if (<= i n)
(cons 's (help (+ i 1)))
'()))
(help 1 ) )
Input:
(countup 4)
desired output:
'(s s s s .z)
but coming output
'(s s s s)
As #molbdnilo mentioned, it has to with output style of proper (ie, null-terminated) vs improper lists.
#lang racket
(cons 's (cons 's (cons 's (cons 's 'z)))) ; => '(s s s s . z)
(cons 's (cons 's (cons 's (cons 's '())))) ; => '(s s s s)
(cons 's (cons 's (cons 's (cons 's (cons 'z '()))))) ; => '(s s s s z)
Related
I'm currently learning about recursion in Scheme. I found this recursive definition but I don't understand what it is trying to do. If someone could explain it to me, I would appreciate it. Here is the definition:
(define (function ls)
(if (null? ls) '()
(append
(map (lambda (x) (cons (car ls) x))
(function (cdr ls))
)
(function (cdr ls))
)
)
)
In its current state, function simply returns the empty list, no matter the input. However, it does ring a bell. It looks like a failed attempt to implement the powerset function:
(define (powerset ls)
(if (null? ls)
'(())
(append (map (lambda (x) (cons (car ls) x))
(powerset (cdr ls)))
(powerset (cdr ls)))))
Can you spot the difference? the base case in your code is wrong! In case you were wondering, powerset returns the set of all possible subsets of a list:
(powerset '(1 2 3))
=> '((1 2 3) (1 2) (1 3) (1) (2 3) (2) (3) ())
I'm finishing up a Scheme assignment and I'm having some trouble with the recursive cases for two functions.
The first function is a running-sums function which takes in a list and returns a list of the running sums i.e (summer '(1 2 3)) ---> (1 3 6) Now I believe I'm very close but can't quite figure out how to fix my case. Currently I have
(define (summer L)
(cond ((null? L) '())
((null? (cdr L)) '())
(else (cons (car L) (+ (car L) (cadr L))))))
I know I need to recursively call summer, but I'm confused on how to put the recursive call in there.
Secondly, I'm writing a function which counts the occurrences of an element in a list. This function works fine through using a helper function but it creates duplicate pairs.
(define (counts L)
(cond ((null? L) '())
(else (cons (cons (car L) (countEle L (car L))) (counts (cdr L))))))
(define (countEle L x)
(if (null? L) 0
(if (eq? x (car L)) (+ 1 (countEle (cdr L) x)) (countEle (cdr L) x))))
The expected output is:
(counts '(a b c c b b)) --> '((a 1) (b 3) ( c 2))
But it's currently returning '((a . 1) (b . 3) (c . 2) (c . 1) (b . 2) (b . 1)). So it's close; I'm just not sure how to handle checking if I've already counted the element.
Any help is appreciated, thank you!
To have a running sum, you need in some way to keep track of the last sum. So some procedure should have two arguments: the rest of the list to sum (which may be the whole list) and the sum so far.
(define (running-sum L)
(define (rs l s)
...)
(rs L 0))
For the second procedure you want to do something like
(define (count-elems L)
(define (remove-elem e L) ...)
(define (count-single e L) ...)
(if (null? L)
'()
(let ((this-element (car L)))
(cons (list this-element (count-single this-element L))
(count-elems (remove-elem this-element (cdr L)))))))
Be sure to remove the elements you've counted before continuing! I think you can fill in the rest.
To your first problem:
The mistake in your procedure is, that there is no recursive call of "summer". Have a look at the last line.
(else (cons (car L) (+ (car L) (cadr L))))))
Here is the complete solution:
(define (summer LL)
(define (loop sum LL)
(if (null? LL)
'()
(cons (+ sum (car LL)) (loop (+ sum (car ll)) (cdr LL)))))
(loop 0 LL))
i have a function in scheme, this function calls another function many times, and every time this function appends return value of another function to result value.
but finally i want to get a result such that '(a b c), however i get a result such that '((a) (b) (c)) how can i fix this problem? i have searched but i couldn't find good solution.
my little code like that not all of them.
(append res (func x))
(append res (func y))
(append res (func z))
my code like this
(define (check a )
'(1)
)
(define bos '())
(define (func a)
(let loop1([a a] [res '()])
(cond
[(eq? a '()) res]
[else (let ([ x (check (car a))])
(loop1 (cdr a) (append res (list x)))
)]
)
))
Try this:
(define (func a)
(let loop1 ([a a] [res '()])
(cond
[(eq? a '()) res]
[else
(let ([ x (check (car a))])
(loop1 (cdr a) (append res x)))])))
Notice that the only change I made (besides improving the formatting) was substituting (list x) with x. That will do the trick! Alternatively, but less portable - you can use append* instead of append:
(append* res (list x))
As a side comment, you should use (null? a) for testing if the list is empty. Now if we test the procedure using the sample code in the question, we'll get:
(func '(a b c))
=> '(1 1 1)
It seems that instead of
(loop1 (cdr a) (cdr b) c (append res (list x)))
you want
(loop1 (cdr a) (cdr b) c (append res x))
Basically the trick is to use cons instead of list. Imagine (list 1 2 3 4) which is the same as (cons 1 (cons 2 (cons 3 (cons 4 '())))). Do you see how each part is (cons this-iteration-element (recurse-further)) like this:
(define (make-list n)
(if (zero? n)
'()
(cons n (make-list (sub1 n)))))
(make-list 10) ; ==> (10 9 8 7 6 5 4 3 2 1)
Usually when you can choose direction you can always make it tail recursive with an accumulator:
(define (make-list n)
(let loop ((x 1) (acc '()))
(if (> x n)
acc
(loop (add1 x) (cons x acc))))) ; build up in reverse!
(make-list 10) ; ==> (10 9 8 7 6 5 4 3 2 1)
Now this is a generic answer. Applied to your working code:
(define (func a)
(let loop1 ([a a] [res '()])
(cond
[(eq? a '()) (reverse res)]
[else
(let ([x (check (car a))])
(loop1 (cdr a) (cons (car x) res)))])))
(func '(a b c)) ; ==> (1 1 1)
append replaces the cons so why not put the car og your result to the rest of the list. Since you want the result in order I reverse the result in the base case. (can't really tell from the result, but I guessed since you ise append)
I have tried many times but I still stuck in this problem, here is my input:
(define *graph*
'((a . 2) (b . 2) (c . 1) (e . 1) (f . 1)))
and I want the output to be like this: ((2 a b) (1 c e f))
Here is my code:
(define group-by-degree
(lambda (out-degree)
(if (null? (car (cdr out-degree)))
'done
(if (equal? (cdr (car out-degree)) (cdr (car (cdr out-degree))))
(list (cdr (car out-degree)) (append (car (car out-degree))))
(group-by-degree (cdr out-degree))))))
Can you please show me what I have done wrong cos the output of my code is (2 a). Then I think the idea of my code is correct.
Please help!!!
A very nice and elegant way to solve this problem, would be to use hash tables to keep track of the pairs found in the list. In this way we only need a single pass over the input list:
(define (group-by-degree lst)
(hash->list
(foldl (lambda (key ht)
(hash-update
ht
(cdr key)
(lambda (x) (cons (car key) x))
'()))
'#hash()
lst)))
The result will appear in a different order than the one shown in the question, but nevertheless it's correct:
(group-by-degree *graph*)
=> '((1 f e c) (2 b a))
If the order in the output list is a problem try this instead, it's less efficient than the previous answer, but the output will be identical to the one in the question:
(define (group-by-degree lst)
(reverse
(hash->list
(foldr (lambda (key ht)
(hash-update
ht
(cdr key)
(lambda (x) (cons (car key) x))
'()))
'#hash()
lst))))
(group-by-degree *graph*)
=> '((2 a b) (1 c e f))
I don't know why the lambda is necessary; you can directly define a function with (define (function arg1 arg2 ...) ...)
That aside, however, to put it briefly, the problen is that the cars and cdrs are messed up. I couldn't find a way to tweak your solution to work, but here is a working implementation:
; appends first element of pair into a sublist whose first element
; matches the second of the pair
(define (my-append new lst) ; new is a pair
(if (null? lst)
(list (list (cdr new) (car new)))
(if (equal? (car (car lst)) (cdr new))
(list (append (car lst) (list (car new))))
(append (list (car lst)) (my-append new (cdr lst)))
)
)
)
; parses through a list of pairs and appends them into the list
; according to my-append
(define (my-combine ind)
(if (null? ind)
'()
(my-append (car ind) (my-combine (cdr ind))))
)
; just a wrapper for my-combine, which evaluates the list backwards
; this sets the order right
(define (group-by-degree out-degree)
(my-combine (reverse out-degree)))
Given a list of numbers, say, (1 3 6 10 0), how do you compute differences (xi - xi-1), provided that you have x-1 = 0 ?
(the result in this example should be (1 2 3 4 -10))
I've found this solution to be correct:
(define (pairwise-2 f init l)
(first
(foldl
(λ (x acc-data)
(let ([result-list (first acc-data)]
[prev-x (second acc-data)])
(list
(append result-list (list(f x prev-x)))
x)))
(list empty 0)
l)))
(pairwise-2 - 0 '(1 3 6 10 0))
;; => (1 2 3 4 -10)
However, I think there should be more elegant though no less flexible solution. It's just ugly.
I'm new to functional programming and would like to hear any suggestions on the code.
Thanks.
map takes multiple arguments. So I would just do
(define (butlast l)
(reverse (cdr (reverse l))))
(let ((l '(0 1 3 6 10)))
(map - l (cons 0 (butlast l)))
If you want to wrap it up in a function, say
(define (pairwise-call f init l)
(map f l (cons init (butlast l))))
This is of course not the Little Schemer Way, but the way that avoids writing recursion yourself. Choose the way you like the best.
I haven't done scheme in dog's years, but this strikes me as a typical little lisper type problem.
I started with a base definition (please ignore misplacement of parens - I don't have a Scheme interpreter handy:
(define pairwise-diff
(lambda (list)
(cond
((null? list) '())
((atom? list) list)
(t (pairwise-helper 0 list)))))
This handles the crap cases of null and atom and then delegates the meat case to a helper:
(define pairwise-helper
(lambda (n list)
(cond
((null? list) '())
(t
(let ([one (car list)])
(cons (- one n) (pairwise-helper one (cdr list))))
))))
You could rewrite this using "if", but I'm hardwired to use cond.
There are two cases here: null list - which is easy and everything else.
For everything else, I grab the head of the list and cons this diff onto the recursive case. I don't think it gets much simpler.
After refining and adapting to PLT Scheme plinth's code, I think nearly-perfect solution would be:
(define (pairwise-apply f l0 l)
(if (empty? l)
'()
(let ([l1 (first l)])
(cons (f l1 l0) (pairwise-apply f l1 (rest l))))))
Haskell tells me to use zip ;)
(define (zip-with f xs ys)
(cond ((or (null? xs) (null? ys)) null)
(else (cons (f (car xs) (car ys))
(zip-with f (cdr xs) (cdr ys))))))
(define (pairwise-diff lst) (zip-with - (cdr lst) lst))
(pairwise-diff (list 1 3 6 10 0))
; gives (2 3 4 -10)
Doesn't map finish as soon as the shortest argument list is exhausted, anyway?
(define (pairwise-call fun init-element lst)
(map fun lst (cons init-element lst)))
edit: jleedev informs me that this is not the case in at least one Scheme implementation. This is a bit annoying, since there is no O(1) operation to chop off the end of a list.
Perhaps we can use reduce:
(define (pairwise-call fun init-element lst)
(reverse (cdr (reduce (lambda (a b)
(append (list b (- b (car a))) (cdr a)))
(cons (list init-element) lst)))))
(Disclaimer: quick hack, untested)
This is the simplest way:
(define (solution ls)
(let loop ((ls (cons 0 ls)))
(let ((x (cadr ls)) (x_1 (car ls)))
(if (null? (cddr ls)) (list (- x x_1))
(cons (- x x_1) (loop (cdr ls)))))))
(display (equal? (solution '(1)) '(1))) (newline)
(display (equal? (solution '(1 5)) '(1 4))) (newline)
(display (equal? (solution '(1 3 6 10 0)) '(1 2 3 4 -10))) (newline)
Write out the code expansion for each of the example to see how it works.
If you are interested in getting started with FP, be sure to check out How To Design Program. Sure it is written for people brand new to programming, but it has tons of good FP idioms within.
(define (f l res cur)
(if (null? l)
res
(let ((next (car l)))
(f (cdr l) (cons (- next cur) res) next))))
(define (do-work l)
(reverse (f l '() 0)))
(do-work '(1 3 6 10 0))
==> (1 2 3 4 -10)