Find and replace function for R - r

Is there a function in R that can modify a dataframe to find and replace a specific word or character with another?
If I have a dataframe that looks like this:
| Full Path | File |
|:------------------------:|:---------:|
| C:/Path/to/the/file1.ext | file1.ext |
| C:/Path/to/the/file2.ext | file2.ext |
| C:/Path/to/the/file3.ext | file3.ext |
| C:/Path/to/the/file4.ext | file4.ext |
I'd like to modify it to look like this
| Full Path | File |
|:------------------------:|:---------:|
| C:\Path\to\the\file1.ext | file1.ext |
| C:\Path/to\the\file2.ext | file2.ext |
| C:\Path/to\the\file3.ext | file3.ext |
| C:\Path/to\the\file4.ext | file4.ext |

df <- data.frame(matrix(c(rep("this/and/that",5),rep("the other",5)),ncol=2))
df
X1 X2
1 this/and/that the other
2 this/and/that the other
3 this/and/that the other
4 this/and/that the other
5 this/and/that the other
data.frame(apply((df),MARGIN = 2,function(x){gsub("/","\\",x,fixed = TRUE)}),stringsAsFactors=FALSE)
X1 X2
1 this\\and\\that the other
2 this\\and\\that the other
3 this\\and\\that the other
4 this\\and\\that the other
5 this\\and\\that the other

Related

Relabel of rowname column in R dataframe

When I bind multiple dataframes together using Out2 = do.call(rbind.data.frame, Out), I obtain the following output. How do I relabel the first column such that it only contains the numbers within the square brackets, i.e. 1 to 5 for each trial number? Is there a way to add a column name to the first column too?
| V1 | V2 | Trial |
+--------+--------------+--------------+-------+
| [1,] | 0.130880519 | 0.02085533 | 1 |
| [2,] | 0.197243133 | -0.000502744 | 1 |
| [3,] | -0.045241653 | 0.106888902 | 1 |
| [4,] | 0.328759949 | -0.106559163 | 1 |
| [5,] | 0.040894969 | 0.114073454 | 1 |
| [1,]1 | 0.103130056 | 0.013655756 | 2 |
| [2,]1 | 0.133080106 | 0.038049071 | 2 |
| [3,]1 | 0.067975054 | 0.03036033 | 2 |
| [4,]1 | 0.132437217 | 0.022887103 | 2 |
| [5,]1 | 0.124950463 | 0.007144698 | 2 |
| [1,]2 | 0.202996317 | 0.004181205 | 3 |
| [2,]2 | 0.025401354 | 0.045672932 | 3 |
| [3,]2 | 0.169469266 | 0.002551237 | 3 |
| [4,]2 | 0.2303046 | 0.004936579 | 3 |
| [5,]2 | 0.085702254 | 0.020814191 | 3 |
+--------+--------------+--------------+-------+
We can use parse_number to extract the first occurence of numbers
library(dplyr)
df1 %>%
mutate(newcol = readr::parse_number(row.names(df1)))
Or in base R, use sub to capture the digits after the [ in the row names
df1$newcol <- sub("^\\[(\\d+).*", "\\1", row.names(df1))

How to remove empty cells and reduce columns

I have a table, that looks roughly like this:
| variable | observer1 | observer2 | observer3 | final |
| -------- | --------- | --------- | --------- | ----- |
| case1 | | | | |
| var1 | 1 | 1 | | |
| var2 | 3 | 3 | | |
| var3 | 4 | 5 | | 5 |
| case2 | | | | |
| var1 | 2 | | 2 | |
| var2 | 5 | | 5 | |
| var3 | 1 | | 1 | |
| case3 | | | | |
| var1 | | 2 | 3 | 2 |
| var2 | | 2 | 2 | |
| var3 | | 1 | 1 | |
| case4 | | | | |
| var1 | 1 | | 1 | |
| var2 | 5 | | 5 | |
| var3 | 3 | | 3 | |
Three colums for the observers, but only two are filled.
First I want to compute the IRR, so I need a table that has two columns without the empty cells like this:
| variable | observer1 | observer2 |
| -------- | --------- | --------- |
| case1 | | |
| var1 | 1 | 1 |
| var2 | 3 | 3 |
| var3 | 4 | 5 |
| case2 | | |
| var1 | 2 | 2 |
| var2 | 5 | 5 |
| var3 | 1 | 1 |
| case3 | | |
| var1 | 2 | 3 |
| var2 | 2 | 2 |
| var3 | 1 | 1 |
| case4 | | |
| var1 | 1 | 1 |
| var2 | 5 | 5 |
| var3 | 3 | 3 |
I try to use the tidyverse packages, but I'm not sure. Some 'ifelse()' magic may be easier.
Is there a clean and easy method to do something like this? Can anybody point me to the right function to use? Or just to a keyword to search for on stackoverflow? I found a lot of methods to remove whole empty columns or rows.
Edit: I removed the link to the original data. It was unnecessary. Thanks to Lamia for his working answer.
Out of your 3 columns observer1, observer2 and observer3, you sometimes have 2 non-NA values, 1 non-NA value, or 3 NA values.
If you want to merge your 3 columns, you could do:
res = data.frame(df$coding,t(apply(df[paste0("observer",1:3)],1,function(x) x[!is.na(x)][1:2])))
The apply function will return for each row the 2 non-NA values if there are 2, one non-NA value and one NA if there is only one value, and two NAs if there is no data in the row.
We then put this result in a dataframe with the first column (coding).

Split data based on grouping column

I'm trying to work out how, in Azure ML (and therefore R solutions are acceptable), to randomly split data based on a column, such that all records with any given value in that column wind up in one side of the split or another. For example:
+------------+------+--------------------+------+
| Student ID | pass | some_other_feature | week |
+------------+------+--------------------+------+
| 1234 | 1 | Foo | 1 |
| 5678 | 0 | Bar | 1 |
| 9101112 | 1 | Quack | 1 |
| 13141516 | 1 | Meep | 1 |
| 1234 | 0 | Boop | 2 |
| 5678 | 0 | Baa | 2 |
| 9101112 | 0 | Bleat | 2 |
| 13141516 | 1 | Maaaa | 2 |
| 1234 | 0 | Foo | 3 |
| 5678 | 0 | Bar | 3 |
| 9101112 | 1 | Quack | 3 |
| 13141516 | 1 | Meep | 3 |
| 1234 | 1 | Boop | 4 |
| 5678 | 1 | Baa | 4 |
| 9101112 | 0 | Bleat | 4 |
| 13141516 | 1 | Maaaa | 4 |
+------------+------+--------------------+------+
Acceptable output from that if I chose, say, a 50/50 split and to be grouped based on the Student ID column would be two new datasets:
+------------+------+--------------------+------+
| Student ID | pass | some_other_feature | week |
+------------+------+--------------------+------+
| 1234 | 1 | Foo | 1 |
| 1234 | 0 | Boop | 2 |
| 1234 | 0 | Foo | 3 |
| 1234 | 1 | Boop | 4 |
| 9101112 | 1 | Quack | 1 |
| 9101112 | 0 | Bleat | 2 |
| 9101112 | 1 | Quack | 3 |
| 9101112 | 0 | Bleat | 4 |
+------------+------+--------------------+------+
and
+------------+------+--------------------+------+
| Student ID | pass | some_other_feature | week |
+------------+------+--------------------+------+
| 5678 | 0 | Bar | 1 |
| 5678 | 0 | Baa | 2 |
| 5678 | 0 | Bar | 3 |
| 5678 | 1 | Baa | 4 |
| 13141516 | 1 | Meep | 1 |
| 13141516 | 1 | Maaaa | 2 |
| 13141516 | 1 | Meep | 3 |
| 13141516 | 1 | Maaaa | 4 |
+------------+------+--------------------+------+
Now, from what I can tell this is basically the opposite of stratified split, where it would get a random sample with every student represented on both sides.
I would prefer an Azure ML function that did this, but I think that's unlikely so is there an R function or library that gives this kind of functionality? All I could find was questions about stratification which obviously don't help me much.
You can use te following command:
data.fold <- mutate(df, fold = sample(rep_len(1:2, n_distinct(Student ID)))[Student ID])
It returns the original dataframe with an new column that indicates the fold that the student is in. If you want more folds, just adjust the '1:2' part.
I've tried the 'sample unique' way but it did not always work for me in the past.

How do I analyze Market Basket Output?

I have a sale data as below:
+------------+------+-------+
| Receipt ID | Item | Value |
+------------+------+-------+
| 1 | a | 2 |
| 1 | b | 3 |
| 1 | c | 2 |
| 1 | k | 4 |
| 2 | a | 2 |
| 2 | b | 5 |
| 2 | d | 6 |
| 2 | k | 7 |
| 3 | a | 8 |
| 3 | k | 1 |
| 3 | c | 2 |
| 3 | q | 3 |
| 4 | k | 4 |
| 4 | a | 5 |
| 5 | b | 6 |
| 5 | a | 7 |
| 6 | a | 8 |
| 6 | b | 3 |
| 6 | c | 4 |
+------------+------+-------+
Using APriori algorithm, I modified the Rules into different columns:
For eg, I got output as below, I trimmed support, confidence, Lift value.. I am only considering rules which mapped into different columns into Target Item, Item1, Items ({Item1,Item2} -> {Target Item})
Output is as below:
+-------------+-------+-------+
| Target Item | Item1 | Item2 |
+-------------+-------+-------+
| a | b | |
| a | b | c |
| a | k | |
+-------------+-------+-------+
I am looking to calculate the all the receipts having the rules combination and identify the Target item Sale value only in those receipts and also Combined sale value of Item 1 and Item 2 in the combination receipts:
Output should be something like below (I dont need receipt ID's from below)
+-------------+-------+-------+--------------+----------------------+------------------------------+
| Target Item | Item1 | Item2 | Receipt ID's | Value of Target Item | Remaining value(Item1+item2) |
+-------------+-------+-------+--------------+----------------------+------------------------------+
| a | b | | 1,2,5,6 | 2+2+7+8 | 3+5+6+3 |
| a | b | c | 1,6 | 2 | (3+3) + (2+4) |
| a | k | | 1,2,3,4 | 2+2+8+5 | 4+7+1+4 |
+-------------+-------+-------+--------------+----------------------+------------------------------+
To replicate the Apriori:
library(arules)
Data <- data.frame(
Receipt_ID = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,6,6),
item = c('a','b','c','k','a','b','d','k','a','k','c','q','k', 'a','b','a','a', 'b', 'c'
)
,
value = c(2,3,2,4,2,5,6,7,8,1,2,3,4,5,6,7,8,3,4
)
)
write.table(Data,"item.csv",sep=',',row.names = F)
data_frame = read.transactions(
file = "item.csv",
format = "single",
sep = ",",
cols = c("Receipt_ID","item"),
rm.duplicates = T
)
rules_apriori <- apriori(data_frame)
rules_apriori
rules_tab <- as(rules_apriori, "data.frame")
rules_tab
out <- strsplit(as.character(rules_tab$rules),'=>')
rules_tab$rhs <- do.call(rbind, out)[,2]
rules_tab$lhs <- do.call(rbind, out)[,1]
rules_tab$rhs <- gsub("\\{", "", rules_tab$rhs)
rules_tab$rhs <- gsub("}", "", rules_tab$rhs)
rules_tab$lhs = gsub("}", "", rules_tab$lhs)
rules_tab$lhs = gsub("\\{", "", rules_tab$lhs)
rules_final <- data.frame (target_item = character(),item_combination = character() )
rules_final <- cbind(target_item = rules_tab$rhs,item_Combination = rules_tab$lhs)
rules_final

How to subset a dataframe using a column from another dataframe in r?

I have 2 dataframes
Dataframe1:
| Cue | Ass_word | Condition | Freq | Cue_Ass_word |
1 | ACCENDERE | ACCENDINO | A | 1 | ACCENDERE_ACCENDINO
2 | ACCENDERE | ALLETTARE | A | 0 | ACCENDERE_ALLETTARE
3 | ACCENDERE | APRIRE | A | 1 | ACCENDERE_APRIRE
4 | ACCENDERE | ASCENDERE | A | 1 | ACCENDERE_ASCENDERE
5 | ACCENDERE | ATTIVARE | A | 0 | ACCENDERE_ATTIVARE
6 | ACCENDERE | AUTO | A | 0 | ACCENDERE_AUTO
7 | ACCENDERE | ACCENDINO | B | 2 | ACCENDERE_ACCENDINO
8 | ACCENDERE| ALLETTARE | B | 3 | ACCENDERE_ALLETTARE
9 | ACCENDERE| ACCENDINO | C | 2 | ACCENDERE_ACCENDINO
10 | ACCENDERE| ALLETTARE | C | 0 | ACCENDERE_ALLETTARE
Dataframe2:
| Group.1 | x
1 | ACCENDERE_ACCENDINO | 5
13 | ACCENDERE_FUOCO | 22
16 | ACCENDERE_LUCE | 10
24 | ACCENDERE_SIGARETTA | 6
....
I want to exclude from Dataframe1 all the rows that contain words (Cue_Ass_word) that are not reported in the column Group.1 in Dataframe2.
In other words, how can I subset Dataframe1 using the strings reported in Dataframe2$Group.1?
It's not quite clear what you mean, but is this what you need?
Dataframe1[!(Dataframe1$Cue_Ass_word %in% Dataframe2$Group1),]

Resources