Calculate a dynamic iteration value when zooming into a Mandelbrot - formula

I'm trying to figure out how to automatically adjust the maximum iteration value when moving around in the Mandelbrot fractal.
All examples I've found uses a constant of 1000 or less but that's not enough when zooming into the fractal set.
Is there a way to determine the number of max_iterations based on for example where you are in the Mandelbrot space (x_start,x_end,y_start,y_end)?

One method I tried was to repetitively pre-process a small area in the region of the Mset boundary with increasing iterations until the percentage change in status from one repetition to the next was small. The problem was, that would vary in different places on the current map, since the "depth" varies across it. How to find the right place to do it? By logging the "deepest" boundary area during the previous generation (that will still be within the next zoom area).
But my best strategy was to avoid iterating wherever possible:
Away from the boundary of the Mset, areas of equal depth can be "contoured" and then filled with that depth. It was not an easy algorithm. Basically I followed a raster scan but when I detected a boundary of iteration change (examining all the neighbours to ensure I wasn't close the the edge of the Mset), I would switch to a curve-stitching method to iterate around a contour back to where it started (obviously not recalculating spots I already did), and then make a second pass filling in the raster lines within the countour with the iteration level. It was fraught with leaks but eventually I cracked it.
Within the Mset, I followed the same approach, because the very last thing you want to do is to plough across vast areas and hit the iteration limit.
The difficult area is close the the boundary, where the iteration results can't be related to smooth contours with the neighbours. The contour stitching method won't work here, since there is only ever 1 pixel of a particular depth.
Using the contour method also will have faults to the lower or Mset sides of this region, but since this area looks chaotic until you zoom deeper, I lived with that.
So having said all that, I simply set the iteration depth as high as I can tolerate, but perhaps you can combine my first paragraph with the area-filling techniques.
BTW colouring the region adjacent to the Mset looks terrible when an animated smooth playback of the zoom is attempted. For that reason I coloured this area in a grey scale, by comparing with neighbours. If there was too much difference, I coloured to 0x808080 at first, then adapted that depending on the predominance of the neighbours' depth. All requiring fine tuning!

Related

Rendering highly granular and "zoomed out" data

There was a gif on the internet where someone used some sort of CAD and drew multiple vector pictures in it. On the first frame they zoom-in on a tiny dot, revealing there a whole new different vector picture just on a different scale, and then they proceed to zoom-in further on another tiny dot, revealing another detailed picture, repeating several times. here is the link to the gif
Or another similar example: imagine you have a time-series with a granularity of a millisecond per sample and you zoom out to reveal years-worth of data.
My questions are: how such a fine-detailed data, in the end, gets rendered, when a huge amount of data ends up getting aliased into a single pixel.
Do you have to go through the whole dataset to render that pixel (i.e. in case of time-series: go through million records to just average them out into 1 line or in case of CAD render whole vector picture and blur it into tiny dot), or there are certain level-of-detail optimizations that can be applied so that you don't have to do this?
If so, how do they work and where one can learn about it?
This is a very well known problem in games development. In the following I am assuming you are using a scene graph, a node-based tree of objects.
Typical solutions involve a mix of these techniques:
Level Of Detail (LOD): multiple resolutions of the same model, which are shown or hidden so that only one is "visible" at any time. When to hide and show is usually determined by the distance between camera and object, but you could also include the scale of the object as a factor. Modern 3d/CAD software will sometimes offer you automatic "simplification" of models, which can be used as the low res LOD models.
At the lowest level, you could even just use the object's bounding
box. Checking whether a bounding box is in view is only around 1-7 point checks depending on how you check. And you can utilise object parenting for transitive bounding boxes.
Clipping: if a polygon is not rendered in the view port at all, no need to render it. In the GIF you posted, when the camera zooms in on a new scene, what is left from the larger model is a single polygon in the background.
Re-scaling of world coordinates: as you zoom in, the coordinates for vertices become sub-zero floating point numbers. Given you want all coordinates as precise as possible and given modern CPUs can only handle floats with 64 bits precision (and often use only 32 for better performance), it's a good idea to reset the scaling of the visible objects. What I mean by that is that as your camera zooms in to say 1/1000 of the previous view, you can scale up the bigger objects by a factor of 1000, and at the same time adjust the camera position and focal length. Any newly attached small model would use its original scale, thus preserving its precision.
This transition would be invisible to the viewer, but allows you to stay within well-defined 3d coordinates while being able to zoom in infinitely.
On a higher level: As you zoom into something and the camera gets closer to an object, it appears as if the world grows bigger relative to the view. While normally the camera space is moving and the world gets multiplied by the camera's matrix, the same effect can be achieved by changing the world coordinates instead of the camera.
First, you can use caching. With tiles, like it's done in cartography. You'll still need to go over all the points, but after that you'll be able zoom-in/zoom-out quite rapidly.
But if you don't have extra memory for cache (not so much actually, much less than the data itself), or don't have time to go over all the points you can use probabilistic approach.
It can be as simple as peeking only every other point (or every 10th point or whatever suits you). It yields decent results for some data. Again in cartography it works quite well for shorelines, but not so well for houses or administrative boarders - anything with a lot of straight lines.
Or you can take a more hardcore probabilistic approach: randomly peek some points, and if, for example, there're 100 data points that hit pixel one and only 50 hit pixel two, then you can more or less safely assume that if you'll continue to peek points still pixel one will be twice as likely to be hit that pixel two. So you can just give up and draw pixel one with a twice more heavy color.
Also consider how much data you can and want to put in a pixel. If you'll draw a pixel in black and white, then there're only 256 variants of color. And you don't need to be more precise. Or if you're going to draw a pixel in full color then you still need to ask yourself: will anyone notice the difference between something like rgb(123,12,54) and rgb(123,11,54)?

How tell if a point is within a polygon for texture

This seems to be a rather asked question - (hear me out first! :)
I've created a polygon with perlin noise, and it looks like this:
I need to generate a texture from this array of points. (I'm using Monogame/XNA, but I assume this question is somewhat agnostic).
Anyway, researching this problem tells me that many people use raycasting to determine how many times a line crosses over the polygon shape (If once, it's inside. twice or zero times, it's outside). This makes sense, but I wonder if there is a better way, given that I have all of the points.
Doing a small raycast for every pixel I want to fill in seems excessive - is this the only/best way?
If I have a small 500px square image I need to fill in, I'll need to do a raycast for 250,000 individual pixels, which seems like an awful lot.
If you want to do this for every pixel, you can use a sweeping line:
Start from the topmost coordinate and examine a horizontal ray from left to right. Calculate all intersections with the polygon and sort them by their x-coordinate. Then iterate all pixels on the line and remember if you are in or out. Whenever you encounter an intersection, switch to the other side. If some pixel is in, set the texture. If not, ignore it. Do this from top to bottom for every possible horizontal line.
The intersection calculation could be enhanced in several ways. E.g. by using an acceleration data structure like a grid, quadtree, etc. or by examining the intersecting or touching edges of the polygon before. Then, when you sweep the line, you will already know, which edges will cause an intersection.

How would you continuously improve the mandelbrot fractal?

I've seen many mandelbrot image generator drawing a low resolution fractal of the mandelbrot and then continuously improve the fractal. Is this a tiling algorithm? Here is an example: http://neave.com/fractal/
Update: I've found this about recursively subdivide and calculate the mandelbrot: http://www.metabit.org/~rfigura/figura-fractal/math.html. Maybe it's possible to use a kd-tree to subdivide the image?
Update 2: http://randomascii.wordpress.com/2011/08/13/faster-fractals-through-algebra/
Update 3: http://www.fractalforums.com/programming/mandelbrot-exterior-optimization/15/
Author of Fractal eXtreme and the randomascii blog post linked in the question here.
Fractal eXtreme does a few things to give a gradually improving fractal image:
Start from the middle, not from the top. This is a trivial change that many early fractal programs ignored. The center should be the area the user cares the most about. This can either be starting with a center line, or spiraling out. Spiraling out has more overhead so I only use it on computationally intense images.
Do an initial low-res pass with 8x8 blocks (calculating one pixel out of 64). This gives a coarse initial view that is gradually refined at 4x4, 2x2, then 1x1 resolutions. Note that each pass does three times as many pixels as all previous passes -- don't recalculate the original points. Subsequent passes also start at the center, because that is more important.
A multi-pass method lends itself well to guessing. If four pixels in two rows have the same value then the pixels in-between probably have the same value, so don't calculate them. This works extremely well on some images. A cleanup pass at the end to look for pixels that were miscalculated is necessary and usually finds a few errors, but I've never seen visible errors after the cleanup pass, and this can give a 10x+ speedup. This feature can be disabled. The success of this feature (guess percentage) can be viewed in the status window.
When zooming in (double-click to double the magnification) the previously calculated pixels can be used as a starting point so that only three quarters of the pixels need calculating. This doesn't work when the required precision increases but these discontinuities are rare.
More sophisticated algorithms are definitely possible. Curve following, for instances.
Having fast math also helps. The high-precision routines in FX are fully unwound assembly language (generated by C# code) that uses 64-bit multiplies.
FX also has a couple of checks for points within the two biggest bulbs, to avoid calculating them at all. It also watches for cycles in calculations -- if the exact same point shows up then the calculations will repeat.
To see this in action visit http://www.cygnus-software.com/
I think that site is not as clever as you give it credit for. I think what happens on a zoom is this:
Take the previous image, scale it up using a standard interpolation method. This gives you the 'blurry' zoomed in image. Click the zoom in button several times to see this best
Then, in concentric circles starting from the central point, recalculate squares of the image in full resolution for the new zoom level. This 'sharpens' the image progressively from the centre outwards. Because you're probably looking at the centre, you see the improvement straight away.
You can more clearly see what it's doing by zooming far in, then dragging the image in a diagonal direction, so that almost all the screen is undrawn. When you release the drag, you will see the image rendered progressively in squares, in concentric circles from the new centre.
I haven't checked, but I don't think it's doing anything clever to treat in-set points differently - it's just that because an entirely-in-set square will be black both before and after rerendering, you can't see a difference.
The oldschool Mandelbrot rendering algorithm is the one that begins calculating pixels at the top-left position, goes right until it reaches the end of the screen then moves to the beginning of next line, like an ordinary typewriter machine (visually).
The linked algorithm is just calculating pixels in a different order, and when it calculates one, it quickly makes assumption about certain neighboring pixels and later goes back to properly redraw them. That's when you see improvement, think of it as displaying a progressive JPEG. If you zoom into the set, certain pixel values will remain the same (they don't need to be recalculated) the interim pixels will be guessed, quickly drawn and later recalculated.
A continuously improving Mandelbrot is just for your eyes, it will never finish earlier than a properly calculating per-pixel algorithm which can detect "islands".

How to detect a trend inside unsteady data (e.g. Trendly)?

I was wondering what kind of model / method / technique Trendly might use to achieve this model:
[It tries to find the moments where significant changes set in and ignores random movements]
Any pointers very welcome! :)
I've never seen 'Trendly', and don't know anything about it, but if I wanted to produce that red line from that blue line, in an algorithmic fashion, I would try:
Fourier the whole data set
Choose a block size longer than the period of the dominant frequency
Divide the data up into blocks of the chosen size
Compare adjacent ones with a statistical test of some sort.
Where the test says two blocks belong to the same underlying distribution, merge them.
If any were merged, go back to 4.
Red trend line is the mean of each block.
A simple "median" function could produce smoother curves over a mostly un-smooth curve.
Otherwise, a brute-force or genetic algorithm could be used; attempting to find the way to split the data into sections, so that more sections = worse solution, and less accuracy of the lines = worse solution.
Another way would be like this: Start at the beginning. As soon as the line moves outside of some radius (3 above or 3 below the first, for instance) set the new height to an average of the current line's height and the previous marker.
If you keep doing that, it would ignore small fluctuations. However, if the fluctuation was large enough, it would still effect it.

Drawing an iso line of a 2D implicit scalar field

I have an implicit scalar field defined in 2D, for every point in 2D I can make it compute an exact scalar value but its a somewhat complex computation.
I would like to draw an iso-line of that surface, say the line of the '0' value. The function itself is continuous but the '0' iso-line can have multiple continuous instances and it is not guaranteed that all of them are connected.
Calculating the value for each pixel is not an option because that would take too much time - in the order of a few seconds and this needs to be as real time as possible.
What I'm currently using is a recursive division of space which can be thought of as a kind of quad-tree. I take an initial, very coarse sampling of the space and if I find a square which contains a transition from positive to negative values, I recursively divide it to 4 smaller squares and checks again, stopping at the pixel level. The positive-negative transition is detected by sampling a sqaure in its 4 corners.
This work fairly well, except when it doesn't. The iso-lines which are drawn sometimes get cut because the transition detection fails for transitions which happen in a small area of an edge and that don't cross a corner of a square.
Is there a better way to do iso-line drawing in this settings?
I've had a lot of success with the algorithms described here http://web.archive.org/web/20140718130446/http://members.bellatlantic.net/~vze2vrva/thesis.html
which discuss adaptive contouring (similar to that which you describe), and also some other issues with contour plotting in general.
There is no general way to guarantee finding all the contours of a function, without looking at every pixel. There could be a very small closed contour, where a region only about the size of a pixel where the function is positive, in a region where the function is generally negative. Unless you sample finely enough that you place a sample inside the positive region, there is no general way of knowing that it is there.
If your function is smooth enough, you may be able to guess where such small closed contours lie, because the modulus of the function gets small in a region surrounding them. The sampling could then be refined in these regions only.

Resources