Related
I am getting an error
Error in svd(X) : infinite or missing values in 'x'
while doing summary of ordinal regression model. This is my code ..
library(MASS)
a <- dget('dput.txt')
lep <- polr(bmicat2 ~ Leptin, data = a,Hess = TRUE)
summary(lep)
Error in svd(X) : infinite or missing values in 'x'
sample data is given to replicate the error. Can someone please help.
structure(list(bmicat2 = structure(c(1L, 3L, 2L, 1L, 1L, 1L,
1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 3L, 2L, 3L, 3L, 3L, 3L, 1L,
3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 2L, 3L,
2L, 1L, 1L, 3L, 3L, 2L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 1L, 1L,
1L, 2L, 1L, 3L, 2L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L,
3L, 3L, 2L, 3L, 1L, 3L, 3L, 3L, 2L, 2L, 1L, 2L, 2L, 1L, 3L, 1L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 2L, 2L, 2L, 1L, 3L,
3L, 3L, 3L, 3L, 2L, 3L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 2L,
2L, 1L, 1L, 1L, 3L, 2L, 1L, 3L, 2L, 2L, 2L, 2L, 1L, 3L, 1L, 3L,
1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 3L,
1L, 2L, 1L, 2L, 1L, 1L, 3L, 1L, 2L, 1L, 2L, 1L, 3L, 2L, 1L, 1L,
1L, 3L, 1L, 1L, 2L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 3L, 1L, 1L, 3L,
1L, 3L, 1L, 3L, 3L, 3L, 1L, 2L, 1L, 3L, 1L, 3L, 2L, 1L, 3L, 3L,
1L, 2L, 3L, 3L, 1L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 3L, 2L, 3L, 2L, 1L, 1L,
3L, 3L, 2L, 1L, 3L, 2L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 1L,
3L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
3L, 3L, 1L, 3L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 3L, 3L,
2L, 3L, 2L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 1L, 3L,
1L, 1L, 1L, 3L, 1L, 2L, 3L, 1L, 1L, 3L, 2L, 1L, 3L, 3L, 2L, 2L,
1L, 1L, 3L, 2L, 3L, 3L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 3L,
3L, 3L, 2L, 1L, 1L, 3L, 3L, 1L, 2L, 3L, 3L, 1L, 3L, 3L, 1L, 1L,
1L, 3L, 1L, 3L, 3L, 2L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 1L, 1L, 1L,
3L, 2L, 2L, 2L, 1L, 3L, 1L, 3L, 1L, 3L, 2L, 1L, 2L, 3L, 1L, 3L,
1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 1L, 3L,
1L, 1L, 3L), .Label = c("Normal", "Overweight", "Obesity"), class = "factor"),
Leptin = c(47710.88, 200022.04, 161067.35, 55561.76, 100728.06,
69783.61, 54981.01, 58801.34, 128313.05, 157378.46, 292366.57,
121608.04, 206046.88, 54981.01, 154969.33, 516791.75, 104766.73,
440134.48, 286576.47, 343513.87, 40020.2, 30077.63, 359266.48,
290381.41, 23005.7, 48080.73, 134741.37, 114631.03, 49644.25,
139956.69, 138242.54, 19862, 64541.08, 57119.32, 115382.48,
7238.99, 154969.33, 82321.93, 85406.54, 19170.47, 57208.08,
277488.74, 290791.3, 206703.97, 25333.82, 20134.62, 32823.3,
231036.03, 111986.18, 352190.59, 128041.35, 185025.96, 63451.72,
143404.56, 71163.46, 252067.35, 46223.39, 185077.75, 172339.07,
41381.36, 91498.49, 233969.82, 24245.94, 248133.29, 145890.48,
196431.01, 146690.84, 218617.65, 151333.68, 245695.08, 336242.88,
266936.45, 64105.63, 301181.31, 150192.02, 253863.48, 314169.03,
406059.04, 68228.37, 335171.04, 37547.56, 123713.8, 75034,
45708.91, 67449.43, 15920.57, 38444.37, 19170.47, 174853.97,
236689.18, 22879.68, 34599.46, 57562.83, 177486.58, 244481.84,
122637.48, 58094.2, 82921.65, 382788.21, 119733.17, 64192.75,
8787.33, 17146.98, 21986.45, 13077.71, 18320.19, 119777.74,
61615.67, 5708.97, 24307.05, 244118.62, 10780.13, 12158.23,
80265.64, 70215.06, 122189.66, 48219.23, 156702.5, 128313.05,
115072.95, 152956.29, 107776.73, 108914.21, 85835.09, 13608.28,
24853.42, 58359.56, 29967.69, 168944.14, 22435.55, 67709.18,
17444.89, 51058.87, 21072.27, 34702.75, 9711.01, 43870.71,
113571.74, 26863.91, 294914.16, 15920.57, 23381.51, 309409.6,
19587.14, 99905.3, 79494.37, 90768.21, 131129.25, 411527.63,
132269.4, 83735.58, 92014.19, 57030.54, 62578.38, 131676.19,
238711.8, 48080.73, 429691.15, 88750.76, 32770.45, 163022.26,
98045.93, 8421.27, 113659.95, 27210.74, 421265.4, 225005.8,
39431.91, 18748.27, 224660.83, 13695.33, 11186.36, 42727.62,
863581.67, 18031.36, 250895.16, 326547.74, 69351.93, 34288.82,
64932.66, 23381.51, 392858.01, 32399.47, 176370.64, 31651.9,
17592.65, 93304.24, 71938.68, 297130.98, 58624.7, 311565.88,
143685.29, 204518.07, 28689.43, 612308, 119688.61, 116888.21,
60738.48, 274462.8, 307122.48, 202886.86, 119777.74, 194409.2,
259555.37, 479766.12, 97527.66, 177029.67, 17146.98, 70560.06,
50922.4, 213003.8, 142470.09, 26747.8, 235563.59, 49460.99,
185181.36, 27210.74, 156220.34, 284284.42, 254982.61, 67059.61,
46736.22, 97657.21, 399497.2, 13433.03, 385197.12, 143685.29,
46503.31, 333111.93, 228589.14, 40117.95, 86563.73, 459114.82,
334559.84, 39824.45, 90295.84, 19309.96, 25333.82, 15604.37,
548683.37, 13954.22, 63974.92, 283344.56, 47061.73, 14794.69,
56852.91, 63320.83, 21335.74, 18176.13, 44060.31, 31436.88,
779337.47, 177842.32, 15683.81, 1804.18, 18031.36, 150572.24,
69956.22, 353788.11, 42823.25, 25927.76, 23131.34, 351871.83,
130355.47, 48034.54, 9711.01, 296020.99, 77994.24, 106641.08,
NA, 68876.79, 64323.41, 37947.12, 166071.05, 239189.29, 376318.03,
132041.15, 48818.15, 209454.17, 25572.25, 232324.09, 142750.23,
34185.02, 21204.24, 6040.1, 5708.97, 252190.95, 129219.75,
50922.4, 97786.76, 117464.95, 84978.04, 15122, 6356.95, NA,
299220.74, 28801.64, 535105.27, 421922.32, 9486.52, 159801.65,
139492.77, 40410.71, 28011.68, 67189.58, 10780.13, 173997.11,
15283.91, 192081.41, 169590.94, 29747.24, 57961.45, 55606.38,
351712.55, 157233.52, 117553.73, 201046.58, NA, 204409.11,
468179.87, 201640.99, 374968.45, 330911.94, 153817.84, 45098.7,
83050.16, NA, 20134.62, 20606.55, 328498.24, 22115.29, 40313.21,
196751.22, 6356.95, 8042.41, 252005.56, 124522.47, 9711.01,
168745.34, 110580.08, 78722.96, 104897.35, 43728.34, 20270.11,
339321.01, 170488.25, 55829.38, 173292.85, 29967.69, 5708.97,
30132.53, 12715.53, 180648.71, 146219.86, 33716.28, 85835.09,
110404.53, 327146.88, 259303.38, 164396.3, 206156.31, 21204.24,
105158.65, 152478.41, 327897.07, 29025.44, 36237.65, 426358.52,
265525.58, 52464.02, 287117.75, 658217.42, 67709.18, 107645.6,
46829.29, 186790.78, 68920, 363915.23, 269385.74, 126324.01,
146361.1, 153243.28, 101161.4, 318839.47, 132223.74, 96190,
143966.19, 162141.4, 63495.34, 35371.14, 261070.81, 197071.7,
240146.08, 73100.38, 63713.39, 248622.82, 92616.07, 163120.25,
95026.25, 266807.98, 153434.72, 145937.52, 127950.82, 376487.04,
81208.15, 311998.55, 41767.47, 59595.08, 13256.19, 35011.88,
99083.27, 47571.98, 174450.51, 8296.48, 35524.66, 68747.15,
214064.04, 127272.35, 70603.17, 99256.27, 19862, 145373.38,
184560.15, 57828.63, 115426.71)), row.names = c(NA, -425L
), class = c("tbl_df", "tbl", "data.frame"))
It is an issue of lep$Hessian having NA values. If you do this:
lep <- polr(bmicat2 ~ Leptin, data = a,Hess = TRUE)
lep$Hessian[1,1]<-0
lep$Hessian[1,2]<-0
lep$Hessian[1,3]<-0
lep$Hessian[2,1]<-0
lep$Hessian[3,1]<-0
summary(lep)
You do not have any problems but the output from lep and summary(lep) are pretty much the same, I think. Is it the imputation of 0 to missing values in the Hessian that disturbing?
I wanted to make plots that look like figure 1 (source: link)
In figure 1, they have plotted the regression analysis with one-year yield variability. In my case, I would like to plot variability between two locations and 4 blocks for each treatment group. So the plot I wanted would have three facets for factors B.glucosidase, Protein, POX.C of variable and four colors for treatments factors. Also, in my current plot I have legend for block and treatment. I should only have treatment because the block should be used for making error bar for variability.
I tried with this code, which obviously doesn't work for what I want. (Data for df.melted included below.)
ggplot(df.melted, aes(x = value, y = yield, color = as.factor(treatment))) +
geom_point(aes(shape= as.factor(block))) +
stat_smooth(method = "lm", formula = y ~ x, col = "darkslategrey", se=F) +
stat_poly_eq(formula = y~x,
# aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
aes(label = ..rr.label..),
parse = TRUE) +
theme_classic() +
geom_errorbar(aes(ymax = df.melted$yield+sd(df.melted$yield), ymin = df.melted$yield-sd(df.melted$yield)), width = 0.05)+
facet_wrap(~variable)
Data:
df.melted <- structure(list(Location = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("M", "U"), class = "factor"),
treatment = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), .Label = c("CC",
"CCS", "CS", "SCS"), class = "factor"), block = c(1L, 2L,
3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L,
1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L,
4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L,
3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L,
2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L,
1L, 2L, 3L, 4L), yield = c(5156L, 5157L, 5551L, 5156L, 4804L,
4720L, 4757L, 5021L, 4826L, 4807L, 4475L, 4596L, 4669L, 4588L,
4542L, 4592L, 5583L, 5442L, 5693L, 5739L, 5045L, 4902L, 5006L,
5086L, 4639L, 4781L, 4934L, 4857L, 4537L, 4890L, 4842L, 4608L,
5156L, 5157L, 5551L, 5156L, 4804L, 4720L, 4757L, 5021L, 4826L,
4807L, 4475L, 4596L, 4669L, 4588L, 4542L, 4592L, 5583L, 5442L,
5693L, 5739L, 5045L, 4902L, 5006L, 5086L, 4639L, 4781L, 4934L,
4857L, 4537L, 4890L, 4842L, 4608L, 5156L, 5157L, 5551L, 5156L,
4804L, 4720L, 4757L, 5021L, 4826L, 4807L, 4475L, 4596L, 4669L,
4588L, 4542L, 4592L, 5583L, 5442L, 5693L, 5739L, 5045L, 4902L,
5006L, 5086L, 4639L, 4781L, 4934L, 4857L, 4537L, 4890L, 4842L,
4608L), variable = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("B.glucosidase",
"Protein", "POX.C"), class = "factor"), value = c(1.600946,
1.474084, 1.433078, 1.532492, 1.198667, 1.193193, 1.214941,
1.360981, 1.853056, 1.690117, 1.544357, 1.825132, 1.695409,
1.764123, 1.903743, 1.538684, 0.845077, 1.011463, 0.857032,
0.989803, 0.859022, 0.919467, 1.01717, 0.861689, 0.972332,
0.952922, 0.804431, 0.742634, 1.195837, 1.267285, 1.08571,
1.20097, 6212.631579, 5641.403509, 4392.280702, 7120.701754,
5305.964912, 4936.842105, 5383.157895, 6077.894737, 5769.122807,
5016.842105, 5060.350877, 5967.017544, 5576.842105, 5174.035088,
5655.438596, 5468.77193, 7933.333333, 7000, 6352.982456,
8153.684211, 6077.894737, 4939.649123, 5002.807018, 6489.122807,
4694.035088, 5901.052632, 4303.859649, 6768.421053, 6159.298246,
6090.526316, 4939.649123, 5262.45614, 810.3024, 835.5242,
856.206, 759.8589, 726.2298, 792.6472, 724.7165, 699.3266,
500.9153, 634.8698, 637.9536, 648.8814, 641.0357, 623.3822,
555.2834, 520.8119, 683.3528, 595.9173, 635.4315, 672.4234,
847.2944, 745.5665, 778.3548, 735.8141, 395.2647, 570.4148,
458.0383, 535.3851, 678.0293, 670.7419, 335.2923, 562.5674
)), row.names = c(NA, -96L), class = "data.frame")
library(dplyr)
library(ggplot2)
library(ggpmisc)
Summarize data frame (this could also be done with stat_summary(), but it's often clearer/more transparent to do it explicitly up front). (I think that because your data set is balanced you could collapse/average over the block structure first, and then do your whole plot with the reduced data set - it shouldn't change the outcome of the linear regressions at all, at least not the mean values ... and any statistical comparisons should probably done on block-level summaries anyway ...)
df.sum <- (df.melted
%>% group_by(Location,treatment,variable)
%>% summarise(value=mean(value),yield_sd=sd(yield),
## collapse yield to mean *after* computing sd!
yield=mean(yield))
)
Plot:
(ggplot(df.melted,
aes(x = value, y = yield, color = treatment))
+ stat_smooth(method = "lm", col = "darkslategrey", se=FALSE)
+ stat_poly_eq(
formula = y ~ x,
## aes(label = paste(..eq.label.., ..rr.label.., sep = "~~~")),
aes(group=1, label = ..rr.label..),
parse = TRUE)
+ theme_classic()
+ scale_shape(guide=FALSE)
+ geom_point(data=df.sum)
+ geom_errorbar(data=df.sum,
aes(ymax = yield+yield_sd, ymin = yield-yield_sd),
width = 0.05)
+ facet_wrap(~variable,scale="free_x")
)
(adding group=1 to the stat_poly_eq() aesthetics means we only plot a single R^2 value per facet)
Since you're no longer using the shape aesthetic for anything, you could consider using it to show the Location variable ...
As mention here https://cran.r-project.org/web/packages/energy/energy.pdf
the e.dist returns Returns the E-distances (energy statistics) between clusters.
And as inputs it accepts data matrix of pooled sample or Euclidean distances.
I want to compute the e-distance between 100 observations of my data set.
Look what I did:
> disteuc<-dist(DATABASE,method = "euclidean")
> edist(disteuc,sizes=100)
dist(0)
Why I get null value ??
This is the first 100 rows of my data set:
> dput(DATABASE[1:100,])
structure(list(TYPE_PEAU = c(2L, 2L, 3L, 2L, 2L, 2L, 2L, 4L,
3L, 2L, 2L, 2L, 2L, 1L, 4L, 2L, 2L, 2L, 4L, 2L, 3L, 3L, 2L, 2L,
2L, 2L, 2L, 4L, 3L, 4L, 2L, 2L, 2L, 2L, 4L, 2L, 1L, 2L, 2L, 2L,
2L, 4L, 3L, 2L, 4L, 2L, 1L, 2L, 2L, 2L, 3L, 1L, 2L, 4L, 2L, 2L,
3L, 4L, 2L, 2L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 4L, 2L, 4L, 2L, 4L,
3L, 3L, 2L, 2L, 2L, 2L, 4L, 4L, 2L, 2L, 4L, 2L, 2L, 2L, 4L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L), SENSIBILITE = c(3L,
2L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 3L,
1L, 3L, 3L, 1L, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 1L, 3L,
1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 3L, 2L, 3L, 3L, 2L, 2L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 3L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 2L, 3L, 2L, 3L, 2L,
3L, 3L, 3L, 3L, 3L, 2L, 1L, 1L, 2L, 3L, 3L, 2L, 3L, 1L, 3L, 2L,
1L, 3L, 3L), IMPERFECTIONS = c(2L, 2L, 3L, 3L, 1L, 2L, 2L, 3L,
2L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 2L, 2L, 3L, 2L, 2L, 1L,
2L, 2L, 2L, 3L, 3L, 2L, 1L, 3L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 1L, 2L, 2L, 2L,
3L, 3L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L,
2L, 2L, 1L, 3L, 3L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 3L, 2L, 3L, 3L,
2L, 2L, 3L, 2L, 2L, 1L, 3L, 2L, 1L, 1L, 2L, 1L), BRILLANCE = c(3L,
3L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 1L,
3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L,
3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 2L, 3L, 2L,
3L, 3L, 2L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L), GRAIN_PEAU = c(3L, 3L, 3L, 1L, 3L, 3L, 3L, 2L, 3L,
2L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 3L,
3L, 2L, 3L, 3L, 1L, 3L, 3L, 3L, 2L, 3L, 3L, 1L, 3L, 3L, 3L, 2L,
3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L,
3L, 3L, 2L, 1L, 1L, 1L, 3L, 1L, 3L, 3L, 1L, 2L, 3L, 2L, 2L, 1L,
3L, 3L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 2L, 1L), RIDES_VISAGE = c(3L,
1L, 1L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 1L, 3L, 3L,
3L, 2L, 3L, 3L, 2L, 3L, 3L, 1L, 3L, 1L, 3L, 3L, 3L, 1L, 1L, 3L,
3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 1L, 2L, 3L,
3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 2L, 3L, 3L,
3L, 3L, 2L, 1L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 2L, 3L, 3L,
3L, 1L, 3L), ALLERGIES = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), MAINS = c(2L, 2L,
3L, 3L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L,
3L, 2L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L,
3L, 3L, 2L, 2L, 3L, 2L, 2L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 2L, 3L,
3L, 2L, 3L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 3L, 2L, 2L, 3L, 2L, 3L,
2L, 3L, 3L, 3L, 1L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L,
3L, 2L), PEAU_CORPS = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
2L, 2L, 3L, 2L, 3L, 2L, 3L, 2L, 2L, 1L, 2L, 1L, 2L, 3L, 2L, 3L,
1L, 3L, 2L, 3L, 1L, 2L, 2L, 3L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 2L, 3L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 3L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 3L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 3L, 1L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 3L,
1L, 2L, 3L, 2L, 2L, 2L, 2L, 1L, 2L, 2L), INTERET_ALIM_NATURELLE = c(1L,
1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 3L, 1L, 3L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 1L,
3L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
1L, 1L, 3L), INTERET_ORIGINE_GEO = c(1L, 1L, 2L, 3L, 1L, 1L,
1L, 1L, 1L, 3L, 1L, 3L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
3L, 3L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 1L, 3L,
1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L,
1L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 1L, 3L,
1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 3L,
1L, 1L, 3L, 2L, 1L, 3L, 1L, 1L, 1L, 3L, 1L, 3L, 1L, 2L), INTERET_VACANCES = c(1L,
2L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
3L, 1L, 2L, 3L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
2L, 2L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 3L, 1L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L,
3L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 3L, 1L, 1L, 2L, 2L, 1L,
2L, 1L, 1L), INTERET_ENVIRONNEMENT = c(1L, 3L, 3L, 3L, 1L, 1L,
1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
3L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L,
1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L), INTERET_COMPOSITION = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), AGE_INTERVAL = c(3L, 3L, 4L, 2L, 2L, 3L, 3L, 4L,
4L, 3L, 4L, 2L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L,
2L, 4L, 2L, 3L, 2L, 4L, 3L, 2L, 4L, 4L, 3L, 3L, 4L, 4L, 3L, 3L,
2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 4L, 3L, 2L,
2L, 4L, 2L, 2L, 4L, 3L, 3L, 2L, 3L, 2L, 3L, 3L, 4L, 3L, 2L, 2L,
3L, 2L, 4L, 2L, 4L, 3L, 2L, 4L, 2L, 3L, 2L, 2L, 3L, 2L, 3L, 2L,
2L, 3L, 3L, 4L, 3L, 2L, 3L, 3L, 2L, 3L, 2L, 3L), ATTENTE_BEAUTE_1 = c(1L,
6L, 4L, 4L, 6L, 6L, 3L, 1L, 1L, 4L, 3L, 6L, 2L, 5L, 5L, 6L, 7L,
4L, 6L, 3L, 4L, 6L, 1L, 1L, 1L, 3L, 6L, 2L, 6L, 3L, 4L, 4L, 6L,
3L, 6L, 6L, 1L, 2L, 1L, 3L, 3L, 6L, 2L, 1L, 4L, 6L, 1L, 6L, 6L,
1L, 6L, 6L, 5L, 1L, 3L, 2L, 4L, 3L, 4L, 6L, 7L, 1L, 2L, 6L, 2L,
6L, 6L, 6L, 3L, 6L, 4L, 1L, 5L, 6L, 1L, 1L, 3L, 3L, 6L, 1L, 6L,
6L, 1L, 6L, 4L, 4L, 4L, 2L, 6L, 1L, 6L, 1L, 1L, 1L, 3L, 2L, 4L,
6L, 6L, 6L), ATTENTE_BEAUTE_2 = c(2L, 2L, 3L, 6L, 4L, 1L, 4L,
7L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 2L, 6L, 2L, 2L, 2L, 2L, 2L, 2L,
6L, 4L, 1L, 2L, 1L, 4L, 2L, 3L, 1L, 4L, 7L, 4L, 1L, 6L, 3L, 2L,
1L, 4L, 2L, 7L, 7L, 1L, 5L, 5L, 7L, 4L, 7L, 1L, 2L, 1L, 5L, 7L,
4L, 6L, 1L, 2L, 4L, 3L, 6L, 4L, 4L, 4L, 4L, 4L, 5L, 7L, 1L, 2L,
4L, 3L, 7L, 2L, 6L, 4L, 7L, 5L, 7L, 1L, 1L, 5L, 4L, 6L, 6L, 2L,
1L, 1L, 4L, 3L, 4L, 3L, 3L, 1L, 1L, 6L, 2L, 2L, 2L), MILIEU_VIE = c(1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), PROFIL_SELECTIONNE = c(1L, 32L, 21L, 23L, 34L, 31L,
15L, 6L, 1L, 20L, 14L, 34L, 9L, 28L, 28L, 32L, 42L, 20L, 32L,
14L, 20L, 32L, 1L, 5L, 3L, 13L, 32L, 7L, 34L, 14L, 21L, 19L,
34L, 18L, 34L, 31L, 5L, 8L, 1L, 13L, 15L, 32L, 12L, 6L, 19L,
35L, 4L, 36L, 34L, 6L, 31L, 32L, 25L, 4L, 18L, 9L, 23L, 13L,
20L, 34L, 39L, 5L, 9L, 34L, 9L, 34L, 34L, 35L, 18L, 31L, 20L,
3L, 27L, 36L, 1L, 5L, 15L, 18L, 35L, 6L, 31L, 31L, 4L, 34L, 23L,
23L, 20L, 7L, 31L, 3L, 33L, 3L, 2L, 2L, 13L, 7L, 23L, 32L, 32L,
32L), NOMBRE_ACHAT = c(14L, 6L, 3L, 9L, 8L, 13L, 10L, 14L, 4L,
3L, 10L, 8L, 12L, 3L, 7L, 6L, 4L, 13L, 3L, 3L, 6L, 13L, 3L, 4L,
6L, 7L, 4L, 12L, 5L, 6L, 16L, 3L, 14L, 4L, 4L, 6L, 9L, 13L, 3L,
5L, 12L, 4L, 3L, 6L, 3L, 6L, 6L, 3L, 6L, 4L, 3L, 3L, 7L, 3L,
12L, 12L, 10L, 3L, 6L, 7L, 14L, 3L, 18L, 7L, 5L, 4L, 7L, 17L,
6L, 6L, 3L, 6L, 17L, 10L, 12L, 5L, 13L, 15L, 6L, 3L, 11L, 6L,
7L, 7L, 16L, 3L, 3L, 3L, 3L, 6L, 3L, 4L, 3L, 10L, 3L, 4L, 6L,
5L, 14L, 3L), NOMBRE_CADEAU = c(2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 3L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
3L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 3L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L)), .Names = c("TYPE_PEAU",
"SENSIBILITE", "IMPERFECTIONS", "BRILLANCE", "GRAIN_PEAU", "RIDES_VISAGE",
"ALLERGIES", "MAINS", "PEAU_CORPS", "INTERET_ALIM_NATURELLE",
"INTERET_ORIGINE_GEO", "INTERET_VACANCES", "INTERET_ENVIRONNEMENT",
"INTERET_COMPOSITION", "AGE_INTERVAL", "ATTENTE_BEAUTE_1", "ATTENTE_BEAUTE_2",
"MILIEU_VIE", "PROFIL_SELECTIONNE", "NOMBRE_ACHAT", "NOMBRE_CADEAU"
), row.names = c(NA, 100L), class = "data.frame")
>
You are only specifying a cluster size, if you have 100 data and they are all in the same cluster there are no distances to other clusters.
> edist(disteuc,sizes=100)
dist(0)
> edist(disteuc,sizes=c(10, 90))
1
2 42.51959
> edist(disteuc,sizes=c(10, 40, 50))
1 2
2 44.32714
3 39.80484 35.26888
I'm trying to get ggplot to order my boxplots based on median value after splittin the data into several different facets.
This is part of a larger Shiny app I've written. Under default parameters, I can generate three faceted boxplots that order correctly:
boxData <- structure(list(Classification = structure(c(4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Pluripotent/ Undifferentiated",
"Endoderm", "Mesoderm", "Ectoderm"), class = c("ordered", "factor"
)), value = c(0.000255214868214152, 0.000108050996652777, 0.00751505823956855,
8.71801689770664, 5.71059263813113e-05, 4.90291746067526e-05,
0.000129388767504551, 2.52712436532327e-07, 5345.09546573398,
0.0020991194782334, 4.33360773005175e-06, 1.8200776481618, 3.44754305553851e-06,
4.38932775031697, 0.00720892572385782, 7.53517216121544e-05,
0.221288441144887, 0.00104230990042965, 0.00288742662358172,
4.20947546944294e-05, 9.62973878475845e-07, 0.00710967831313203,
26.9833955280036, 0.00265697432110539, 1.41814003567946, 0.261340025051291,
0.00159083508412152, 9.55044905589291e-06, 0.0122931632086495,
8.54789134364452e-06, 2.01899938950824e-05, 1.55354988683742e-06,
0.000441285511108929, 0.000353500530366103, 0.125347054487635,
109.440278770173, 2.03304264082645e-05, 2.01899938950824e-05,
0.000148628664387571, 2.89902659683517e-06, 207.073625180606,
3.52469070261441e-07, 3.15047327017105e-06, 0.639049681601525,
2.11937734339159e-05, 0.484309094613314, 0.0126387710681522,
0.000124981311087457, 0.010701820155981, 0.00520458916051572,
0.002548740132205, 6.70653961877279e-06, 1.1372650836283e-06,
0.0028674817110041, 6.38196191847228, 0.00104230990042965, 2.77791027153022,
0.385285554179204, 3.23552539344696, 0.00129215960928528, 3313.17800288969,
0.42454812322342, 0.427501088945987, 0.0252775421363044, 1.3790172222154e-05,
0.000499925244349826, 0.575943821174679, 3.66456124110476e-05,
0.000979273863184647, 1.71186456807568e-06, 0.000506903940694852,
3.95489796579998e-05, 7.60789146241221e-07, 5.53083255055159e-07,
0.000283178626588241, 5.68632541814152e-07, 89.5114292952616,
2.15183665744117e-06, 9.48447928546097e-06, 1.10616651011032e-06,
6.83831307491562e-05, 0.000231612381626088, 0.361984543094889,
5.91197625260395e-05, 0.000979273863184647, 2.83936549218472e-06,
0.000979273863184647, 5.11112358098405e-05, 1.714153924998e-07,
5.19634300333657e-07, 0.000285939985649123, 0.000340041865397713,
0.11809338012465, 60.884369685235, 2.29364239206782e-05, 1.59952159960469e-05,
0.000213718586351138, 2.65657707341963e-06, 3635.65603745587,
1.08786283557826e-07, 3.36257994807117e-06, 0.482299092292068,
1.40214978558205e-05, 0.506277403675245, 0.00847835446782661,
5.84677257215999e-05, 0.00674484030136259, 0.00483589957358377,
0.0017456741452281, 6.45120458509457e-06, 6.32689066217975e-07,
0.00245170310797391, 9.30496033238278, 0.000922604532223834,
1.94261499108326, 0.348202870167258, 0.000995700862302919, 9.18683915124066e-06,
0.00490340621594781, 9.51081233425213e-06, 1.64449027258861e-05,
1.32828853670982e-06, 0.000283964853893518, 0.000480891817820092,
0.103521332666818, 96.202334596196, 1.57750051307367e-05, 2.09600255345096e-05,
0.000200793473806753, 1.29196641682183e-06, 179.519904082227,
2.39744324779145e-07, 2.44454941589392e-06, 0.492433221447773,
1.07746460295468e-05, 0.437695664847132, 0.00947275639891981,
9.69768554804815e-05, 0.0056325346541415, 0.00470366164543522,
0.00172164093341244, 6.91422987569681e-06, 8.82439067876674e-07,
0.00253816223135828, 5.84822979360013, 0.000929021754230271,
2.31017156910716, 0.278934830581241, 2.84415482117455, 0.00100262650949219,
2661.45599990874, 0.357992185300285, 0.37579036951639, 0.0210213626331535,
1.87597483406766e-05, 4.9165300967331e-05, 0.353063601096188,
2.84344613435294e-05, 0.00277749494255326, 1.32828853670982e-06,
0.00108958918195797, 9.25073867082013e-06, 1.4059026149049e-07,
4.29154362580066e-07, 0.000537294242854559, 8.10925044524043e-06,
0.020165038913309, 9.91469621624329e-06, 1.63313094852695e-05,
8.58308725160133e-07, 2.34183669433728e-05, 0.000352033415883844,
0.28087497575791, 4.58728478413563e-05, 0.0007598488052299, 1.48407969771465e-06,
0.0223745115812679, 1.15479796826903e-05, 1.33006491938229e-07,
4.03200286568411e-07, 83.9815202938853, 211.131788444181, 1.73147313103931,
0.162893393670412, 6347.61978641754, 1.56049096034741, 0.532923368033971,
0.651573574681646, 22.0392007421302, 0.05154584678813, 85997.0767809387,
2.10234581817541, 1994.76074197656, 17462.8329237372, 1.76785506212734,
49735.9012814537, 1.57134503333516, 340.615434516655, 3.73730938753272,
2.07340220203944, 0.974004268543241, 53.8920290309386, 28.8800232787977,
0.0604547706008708, 6.41744933081988, 1.9615580079771, 0.384751805040216,
1.53900722016086, 1.68412590721683, 2.31658561238929, 1.62675839626425,
2.23767420207142, 1.67249279982813, 1.53900722016086, 1.51781925297405,
0.717972255311719, 1.08072540203935, 1.6958399292663, 1.74351647907412,
1.6958399292663, 0.98077900398855, 0.000159075579756261, 1.32133840565826,
1.57134503333516, 1.79253339913881, 2.00277451142267, 1.74351647907412,
2.66105808216138, 0.90250072746243, 2.059080166868, 1.50733490955838,
1.3966785324674, 1.61552155521922, 1.42602571736414, 1.90791910109511,
1.38703096913138, 1.38703096913138, 1.49692298679269, 1.69583992926629,
2.16145080407871, 2.67956720485568, 1.3966785324674, 1.53900722016086,
1.70763542878249, 0.921464186198703, 3.32188009636358, 10.5707072452661,
6.5522935828786, 1.68412590721683, 7.57896056479413, 1.43594451062343,
0.312515575646302, 34.1070955541741, 2339.52511354582, 11.0962477530511,
8.17942824487938, 1.68412590721683, 0.418123199957032, 804.528657067602,
0.679243142274472, 1.47631440568283, 1.75564359521904, 2.81278639982623,
4.14680440407889, 1.68412590721683, 2.33269873957693, 1.68412590721683,
1.70763542878249, 1.37745004638314, 1.68412590721683), listElement = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Endoderm",
"Mesoderm", "Ectoderm"), class = "factor")), .Names = c("Classification",
"value", "listElement"), row.names = c(NA, -270L), class = "data.frame")
To generate the boxplot:
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
ggplot(boxData, aes(reorder(boxData$temp, value, median),value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
But if a parameter is changed and we only have two samples rather than three (In this case, the same data, but with twice as many 'endoderm' samples and no 'mesoderm' samples), the boxplots look really weird:
boxData <- structure(list(Classification = structure(c(4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Pluripotent/ Undifferentiated",
"Endoderm", "Mesoderm", "Ectoderm"), class = c("ordered", "factor"
)), value = c(0.000255214868214152, 0.000108050996652777, 0.00751505823956855,
8.71801689770664, 5.71059263813113e-05, 4.90291746067526e-05,
0.000129388767504551, 2.52712436532327e-07, 5345.09546573398,
0.0020991194782334, 4.33360773005175e-06, 1.8200776481618, 3.44754305553851e-06,
4.38932775031697, 0.00720892572385782, 7.53517216121544e-05,
0.221288441144887, 0.00104230990042965, 0.00288742662358172,
4.20947546944294e-05, 9.62973878475845e-07, 0.00710967831313203,
26.9833955280036, 0.00265697432110539, 1.41814003567946, 0.261340025051291,
0.00159083508412152, 9.55044905589291e-06, 0.0122931632086495,
8.54789134364452e-06, 2.01899938950824e-05, 1.55354988683742e-06,
0.000441285511108929, 0.000353500530366103, 0.125347054487635,
109.440278770173, 2.03304264082645e-05, 2.01899938950824e-05,
0.000148628664387571, 2.89902659683517e-06, 207.073625180606,
3.52469070261441e-07, 3.15047327017105e-06, 0.639049681601525,
2.11937734339159e-05, 0.484309094613314, 0.0126387710681522,
0.000124981311087457, 0.010701820155981, 0.00520458916051572,
0.002548740132205, 6.70653961877279e-06, 1.1372650836283e-06,
0.0028674817110041, 6.38196191847228, 0.00104230990042965, 2.77791027153022,
0.385285554179204, 3.23552539344696, 0.00129215960928528, 3313.17800288969,
0.42454812322342, 0.427501088945987, 0.0252775421363044, 1.3790172222154e-05,
0.000499925244349826, 0.575943821174679, 3.66456124110476e-05,
0.000979273863184647, 1.71186456807568e-06, 0.000506903940694852,
3.95489796579998e-05, 7.60789146241221e-07, 5.53083255055159e-07,
0.000283178626588241, 5.68632541814152e-07, 89.5114292952616,
2.15183665744117e-06, 9.48447928546097e-06, 1.10616651011032e-06,
6.83831307491562e-05, 0.000231612381626088, 0.361984543094889,
5.91197625260395e-05, 0.000979273863184647, 2.83936549218472e-06,
0.000979273863184647, 5.11112358098405e-05, 1.714153924998e-07,
5.19634300333657e-07, 3.36257994807117e-06, 0.482299092292068,
1.40214978558205e-05, 0.00847835446782661, 5.84677257215999e-05,
0.00674484030136259, 0.00483589957358377, 0.0017456741452281,
6.45120458509457e-06, 6.32689066217975e-07, 0.00245170310797391,
9.30496033238278, 0.000922604532223834, 1.94261499108326, 0.348202870167258,
0.506277403675245, 0.000285939985649123, 0.000340041865397713,
0.11809338012465, 60.884369685235, 2.29364239206782e-05, 1.59952159960469e-05,
0.000213718586351138, 2.65657707341963e-06, 3635.65603745587,
1.08786283557826e-07, 83.9815202938853, 211.131788444181, 1.73147313103931,
0.162893393670412, 6347.61978641754, 1.56049096034741, 0.532923368033971,
0.651573574681646, 22.0392007421302, 0.05154584678813, 85997.0767809387,
2.10234581817541, 1994.76074197656, 17462.8329237372, 1.76785506212734,
49735.9012814537, 1.57134503333516, 340.615434516655, 3.73730938753272,
2.07340220203944, 0.974004268543241, 53.8920290309386, 28.8800232787977,
0.0604547706008708, 6.41744933081988, 1.9615580079771, 1.57750051307367e-05,
2.09600255345096e-05, 0.000200793473806753, 1.29196641682183e-06,
179.519904082227, 2.39744324779145e-07, 2.44454941589392e-06,
0.492433221447773, 1.07746460295468e-05, 0.437695664847132, 0.00947275639891981,
9.69768554804815e-05, 0.0056325346541415, 0.00470366164543522,
0.00172164093341244, 6.91422987569681e-06, 8.82439067876674e-07,
1.57134503333516, 1.79253339913881, 2.00277451142267, 1.74351647907412,
2.66105808216138, 0.90250072746243, 2.059080166868, 1.50733490955838,
1.3966785324674, 1.61552155521922, 0.384751805040216, 1.53900722016086,
1.68412590721683, 0.000995700862302919, 9.18683915124066e-06,
0.00490340621594781, 9.51081233425213e-06, 1.64449027258861e-05,
1.32828853670982e-06, 0.000283964853893518, 0.000480891817820092,
0.103521332666818, 96.202334596196, 1.6958399292663, 0.98077900398855,
0.000159075579756261, 2.31658561238929, 1.62675839626425, 2.23767420207142,
1.67249279982813, 1.53900722016086, 1.51781925297405, 0.717972255311719,
1.08072540203935, 1.6958399292663, 1.74351647907412, 1.32133840565826,
0.0210213626331535, 1.87597483406766e-05, 4.9165300967331e-05,
0.00253816223135828, 5.84822979360013, 0.000929021754230271,
2.31017156910716, 0.278934830581241, 2.84415482117455, 0.00100262650949219,
2661.45599990874, 0.357992185300285, 0.37579036951639, 1.42602571736414,
1.90791910109511, 1.38703096913138, 0.353063601096188, 2.84344613435294e-05,
0.00277749494255326, 1.32828853670982e-06, 0.00108958918195797,
9.25073867082013e-06, 1.4059026149049e-07, 4.29154362580066e-07,
0.000537294242854559, 8.10925044524043e-06, 0.020165038913309,
9.91469621624329e-06, 1.63313094852695e-05, 8.58308725160133e-07,
1.43594451062343, 0.312515575646302, 34.1070955541741, 2339.52511354582,
11.0962477530511, 8.17942824487938, 1.68412590721683, 0.418123199957032,
804.528657067602, 0.679243142274472, 10.5707072452661, 6.5522935828786,
1.68412590721683, 1.38703096913138, 1.49692298679269, 1.69583992926629,
2.16145080407871, 2.67956720485568, 1.3966785324674, 1.53900722016086,
1.70763542878249, 0.921464186198703, 3.32188009636358, 7.57896056479413,
2.34183669433728e-05, 0.000352033415883844, 0.28087497575791,
4.58728478413563e-05, 0.0007598488052299, 1.48407969771465e-06,
0.0223745115812679, 1.15479796826903e-05, 1.33006491938229e-07,
4.03200286568411e-07, 1.47631440568283, 1.75564359521904, 2.81278639982623,
4.14680440407889, 1.68412590721683, 2.33269873957693, 1.68412590721683,
1.70763542878249, 1.37745004638314, 1.68412590721683), listElement = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Endoderm",
"Ectoderm"), class = "factor")), .Names = c("Classification",
"value", "listElement"), row.names = c(NA, -270L), class = "data.frame")
Running the same code as above:
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
ggplot(boxData, aes(reorder(boxData$temp, value, median),value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
gives a strange-looking graph:
This graph should look the same as the first graph, just with two facets rather than three. If I don't try to reorder the values by median, this graph plots fine. I've fiddled with a number of things, but can't seem to fix this issue. I'm sure I've made a stupid mistake somewhere, but can't seem to find it.
Any help would be greatly appreciated!
It looks to me that you are reordering the factor "temp" without releveling the dataset. What about bringing the ordering operation outside the ggplot call?
boxData$temp <- paste(substr(boxData$Classification,1,6),
as.character(boxData$listElement))
fac <- with(boxData, reorder(temp, value, median, order = TRUE))
boxData$temp <- factor(boxData$temp, levels = levels(fac))
ggplot(boxData, aes(temp,value, fill=Classification))+
geom_boxplot()+
scale_y_log10()+
ylab("Fold Expression Change")+
xlab("Gene Classification")+
theme(axis.text.x=element_text(angle=90, hjust=1, size=6))+
facet_wrap(~listElement, scales='free', ncol=1)+
scale_x_discrete(labels=setNames(as.character(boxData$Classification), boxData$temp))
This is what you would expect, right?
When I make a barplot with significance letters from anova above the bars, I use following code:
anova_NDW_geel<-aov(nodule_dry_weight~treatment,inoculatieproef_geel_variety2)
HSD_NDW_geel <- HSD.test(anova_NDW_geel,"treatment",alpha=0.05,group=TRUE)$groups
HSD_NDW_means_geel <- HSD.test(anova_NDW_geel,"treatment",alpha=0.05,group=TRUE)$means
HSD_NDW_means_geel <- HSD_NDW_means_geel[order(-HSD_NDW_means_geel$nodule_dry_weight),]
p_HSD_NDW_geel <- ggplot(aes(x=treatment, y=NDW_mean_geel, width=0.6), data=inoculatieproef_mean_geel)+
geom_bar(stat="identity", data=HSD_NDW_geel, aes(x=trt, y=means), fill="gray40")+
geom_text(data=HSD_NDW_geel, aes(x=trt, y=means, label=M), size=5, vjust=-1, hjust=1)+
ggtitle("Zand")+
ylab("Droog gewicht wortelknolletjes (g)")+
xlab("Behandeling")+
geom_errorbar(aes(ymin=NDW_mean_geel-NDW_sd_geel,ymax=NDW_mean_geel+NDW_sd_geel),
position=position_dodge(width=0.5),width=0.1,size=0.3)+
theme_bw() +
theme(axis.line = element_line(colour="black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
panel.background = element_blank())+
scale_y_continuous(expand = c(0, 0))+
theme(axis.text.x = element_text(angle = 0, hjust = 1, vjust = 0.5))+
theme(text = element_text(size=12))
which results in following graph: http://i.stack.imgur.com/bZidZ.png
This is probably not the best way to do this and when I want to add the letters to the barplots with facet wrap.
Here is a sample of the data I want to make a facet wrap with significance letters with:
structure(list(treatment = structure(c(1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L), .Label = c("1", "2",
"3", "4", "5", "6", "7", "8"), class = "factor"), block = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("I",
"II", "III", "IV"), class = "factor"), position = structure(c(2L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("b",
"gem(ab)"), class = "factor"), variety = structure(c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), location = structure(c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Geel",
"Merelbeke"), class = "factor"), year = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("2014",
"2015"), class = "factor"), nodule_dry_weight = c(0, 0.0467,
0.0328, 0.0885, 0.0081, 0.1086, 0.0788, 0.0267, 0, 0.0128, 0.0143,
0.0333, 0.006, 0.098, 0.0286, 0.011, 0, 0.0627, 0.0769, 0.0784,
0.023, 0.1504, 0.1026, 0.0254, 0, 0.0597, 0.0158, 0.0354, 0.0226,
0.3261, 0.0436, 0, 0, 0.0203, 0.0469, 0.0904, 0.1593, 0.0836,
0.056, 0.0037, 0, 0.0534, 0.0901, 0.0435, 0.0248, 0.0435, 0.0279,
0.0029, 0, 0.0545, 0.038, 0.0991, 0.0099, 0.1453, 0.1096, 0.0272,
0, 0.0319, 0.0624, 0.0508, 0.0415, 0.11, 0.0079, 0, 0, 0.1257,
0.1242, 0.2899, 0.024, 0.2175, 0.2979, 0.0396, 0, 0.1583, 0.2935,
0.2541, 0.1027, 0.4196, 0.2059, 0.0396, 0, 0.0891, 0.167, 0.0907,
0.2153, 0.3063, 0.2921, 0.0528, 0, 0.0928, 0.2109, 0.1514, 0.0821,
0.3607, 0.0996, 0.0069, 0, 0.0685, 0.3109, 0.1862, 0.0393, 0.286,
0.3418, 0.0459, 0, 0.0765, 0.3486, 0.3988, 0.1155, 0.6341, 0.3653,
0.039, 0, 0.0766, 0.3112, 0.1988, 0.05, 0.2856, 0.34, 0.0862,
0, 0.2621, 0.1146, 0.393, 0.1644, 0.3415, 0.1343, 0.019, 0, 0.0976,
0.1853, 0.0691, 0.0248, 0.1764, 0.1244, 0.1525, 0, 0.1529, 0.1069,
0.2833, 0.0204, 0.2966, 0.2371, 0.1464, 0, 0.0691, 0.2094, 0.1633,
0.0264, 0.1344, 0.0694, 0.1175, 0, 0.1783, 0.1434, 0.2136, 0.0873,
0.19, 0.1683, 0.1927, 0, 0.0571, 0.0599, 0.1061, 0.0244, 0.1256,
0.0894, 0.0123, 0, 0.1696, 0.1046, 0.2164, 0.0939, 0.1552, 0.2942,
0.1652, 0, 0.0844, 0.102, 0.0227, 0.025, 0.0654, 0.1234, 0.0702,
0, 0.0979, 0.1246, 0.0958, 0.0867, 0.1104, 0.1969, 0.227, 0,
0.3704, 0.4727, 0.2527, 0.2078, 0.3377, 0.308, 0.1293, 0, 0.2417,
0.3744, 0.2916, 0.1773, 0.433, 0.2446, 0.1382, 0, 0.4718, 0.4271,
0.4882, 0.1799, 0.4178, 0.518, 0.3915, 0, 0.3421, 0.3804, 0.2112,
0.4292, 0.3829, 0.1315, 0.2719, 0, 0.3197, 0.6867, 0.414, 0.3112,
0.2914, 0.4994, 0.369, 0.0256, 0.1494, 0.5577, 0.2538, 0.3854,
0.4151, 0.544, 0.4009, 0, 0.5208, 0.2962, 0.4175, 0.2689, 0.3374,
0.5075, 0.3601, 0, 0.704, 0.4631, 0.4573, 0.154, 0.5087, 0.4319,
0.4155)), .Names = c("treatment", "block", "position", "variety",
"location", "year", "nodule_dry_weight"), row.names = c(NA, -256L
), class = "data.frame")
I use following code for my graph with facet wrap:
inoculatieproef <- inoculatieproef %>%
group_by(treatment, location, variety, year) %>%
mutate(NDW_mean = mean(nodule_dry_weight),
NDW_sd = sd(nodule_dry_weight))
ggplot(data=inoculatieproef,aes(x=treatment, y=NDW_mean))+
facet_wrap(~location*variety*year,ncol=2)+
geom_bar(position="dodge", stat="identity")+
geom_errorbar(aes(ymin = NDW_mean - NDW_sd,
ymax = NDW_mean + NDW_sd),
width=0.1,size=0.3,
color = "darkgrey")+
theme_bw() +
theme(axis.line = element_line(colour="black"),
panel.grid.minor = element_blank(),
panel.background = element_blank())
How do I add on each barplot the significance letters (anova) in de the facet wrap graph?
No idea if the test fits your data distribution, but you can start with that:
library(tidyverse)
stat_pvalue <- dd %>%
group_by(location, variety, year) %>%
rstatix::t_test(nodule_dry_weight~treatment) %>%
filter(p < 0.05) %>%
group_by(location, variety, year) %>%
rstatix::add_significance("p") %>%
rstatix::add_y_position() %>%
mutate(y.position = seq(min(y.position), max(y.position),length.out = n())*1.1) %>%
ungroup()
ggplot(data=dd,aes(x=treatment, y=nodule_dry_weight))+
geom_boxplot() +
facet_wrap(~location + variety + year,ncol=2, scales = "free_y") +
ggpubr::stat_pvalue_manual(stat_pvalue, label = "p")