Laplace expansion for determinants with Octave - recursion

I'm trying to calculate the determinant of a matrix using Laplace expansion in Octave. I use two functions:
submatrix, gets submatrix given matrix and indices:
function A = submatrix(A, i, j)
A(i,:) = [];
A(:,j) = [];
endfunction
determinant, for recursively calculating the determinant:
function d = determinant(A)
[m,n] = size(A);
if m == 2
# Base case are 2x2 matrices
d = A(1,1)*A(2,2) - A(1,2)*A(2,1);
else
d = 0;
for j = 1:n
d = d + (-1).^(1+j)*determinant(submatrix(A,1,j));
endfor
endif
endfunction
The function works correctly with 3 by 3 matrices, yet it always returns 0 (or -0) for bigger matrices (4 by 4 and bigger).
Question: Why does determinant returns 0 for matrices bigger than 3 by 3?

Related

CVXPY violates constraints when it solves SDP

Let's say that I want to solve the following problem.
minimize Tr(CY)
s.t. Y = xxT
x is 0 or 1.
where xxT indicates an outer product of n-1 dimension vector x. C is a n-1 by n-1 square matrix. To convert this problem to a problem with a single matrix variable, I can write down the code as follows by using cvxpy.
import cvxpy as cp
import numpy as np
n = 8
np.random.seed(1)
S = np.zeros(shape=(int(n), int(n)))
S[int(n-1), int(n-1)] = 1
C = np.zeros(shape=(n,n))
C[:n-1, :n-1] = np.random.randn(n-1, n-1)
X = cp.Variable((n,n), PSD=True)
constraints=[]
constraints.append(cp.trace(S # X) == 1)
for i in range(n-1):
Q = np.zeros(shape=(n,n))
Q[i,i] = 1
Q[-1,i] = -0.5
Q[i,-1] = -0.5
const = cp.trace(Q # X) == 0
constraints.append(const)
prob = cp.Problem(cp.Minimize(cp.trace(C # X)),constraints)
prob.solve(solver=cp.MOSEK)
print("X is")
print(X.value)
print("C is")
print(C)
To satisfy the binary constraint that the entries of the vector x should be one or zero, I added some constraints for the matrix variable X.
X = [Y x; xT 1]
Tr(QX) == 0
There are n-1 Q matrices which are forcing the vector x's entries to be 0 or 1.
However, when I ran this simple code, the constraints are violated severely.
Looking forward to see any suggestion or comments on this.

To understand how Gram-Schmidt Process is translated into this piece of code as the implementation

Trying to understand Gram-Schmidt process from this explanation:
http://mlwiki.org/index.php/Gram-Schmidt_Process
The steps of the calculation make sense to me. However the Python implementation included in the same article doesn't seem to be aligned.
def normalize(v):
return v / np.sqrt(v.dot(v))
n = len(A)
A[:, 0] = normalize(A[:, 0])
for i in range(1, n):
Ai = A[:, i]
for j in range(0, i):
Aj = A[:, j]
t = Ai.dot(Aj)
Ai = Ai - t * Aj
A[:, i] = normalize(Ai)
From above code, we see it does dot product for V1 and b, however the (V1,V1) part is not done as the denominator (refer to below equation). I wonder how below equation is translated into code residing in the for loop?
This is what the code does exactly
Basically it normalize the previous vector (column in A) and project the current one to it and to be subtracted by the current one.
Normalization happens with every vector for neat calculation.
The V2 equation above doesn't normalize the previous vector hence the difference.
Try this vectorized implementation.
Also I would suggest to go through David C lay book for theory.
def replace_zero(array):
for i in range(len(array)) :
if array[i] == 0 :
array[i] = 1
return array
def gram_schmidt(self,A, norm=True, row_vect=False):
"""Orthonormalizes vectors by gram-schmidt process
Parameters
-----------
A : ndarray,
Matrix having vectors in its columns
norm : bool,
Do you need Normalized vectors?
row_vect: bool,
Does Matrix A has vectors in its rows?
Returns
-------
G : ndarray,
Matrix of orthogonal vectors
Gram-Schmidt Process
--------------------
The Gram–Schmidt process is a simple algorithm for
producing an orthogonal or orthonormal basis for any
nonzero subspace of Rn.
Given a basis {x1,....,xp} for a nonzero subspace W of Rn,
define
v1 = x1
v2 = x2 - (x2.v1/v1.v1) * v1
v3 = x3 - (x3.v1/v1.v1) * v1 - (x3.v2/v2.v2) * v2
.
.
.
vp = xp - (xp.v1/v1.v1) * v1 - (xp.v2/v2.v2) * v2 - .......
.... - (xp.v(p-1) / v(p-1).v(p-1) ) * v(p-1)
Then {v1,.....,vp} is an orthogonal basis for W .
In addition,
Span {v1,.....,vp} = Span {x1,.....,xp} for 1 <= k <= p
References
----------
Linear Algebra and Its Applications - By David.C.Lay
"""
if row_vect :
# if true, transpose it to make column vector matrix
A = A.T
no_of_vectors = A.shape[1]
G = A[:,0:1].copy() # copy the first vector in matrix
# 0:1 is done to to be consistent with dimensions - [[1,2,3]]
# iterate from 2nd vector to number of vectors
for i in range(1,no_of_vectors):
# calculates weights(coefficents) for every vector in G
numerator = A[:,i].dot(G)
denominator = np.diag(np.dot(G.T,G)) #to get elements in diagonal
weights = np.squeeze(numerator/denominator)
# projected vector onto subspace G
projected_vector = np.sum(weights * G,
axis=1,
keepdims=True)
# orthogonal vector to subspace G
orthogonalized_vector = A[:,i:i+1] - projected_vector
# now add the orthogonal vector to our set
G = np.hstack((G,orthogonalized_vector))
if norm :
# to get orthoNormal vectors (unit orthogonal vectors)
# replace zero to 1 to deal with division by 0 if matrix has 0 vector
# or normazalization value comes out to be zero
G = G/self.replace_zero(np.linalg.norm(G,axis=0))
if row_vect:
return G.T
return G
G = np.array([[1,0,0],[1,1,0],[1,1,1],[1,1,1]])
gram_schmidt(G)
>
array([[ 0.5 , -0.8660254 , 0. ],
[ 0.5 , 0.28867513, -0.81649658],
[ 0.5 , 0.28867513, 0.40824829],
[ 0.5 , 0.28867513, 0.40824829]])

Is there a function f(n) that returns the n:th combination in an ordered list of combinations without repetition?

Combinations without repetitions look like this, when the number of elements to choose from (n) is 5 and elements chosen (r) is 3:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
As n and r grows the amount of combinations gets large pretty quickly. For (n,r) = (200,4) the number of combinations is 64684950.
It is easy to iterate the list with r nested for-loops, where the initial iterating value of each for loop is greater than the current iterating value of the for loop in which it is nested, as in this jsfiddle example:
https://dotnetfiddle.net/wHWK5o
What I would like is a function that calculates only one combination based on its index. Something like this:
tuple combination(i,n,r) {
return [combination with index i, when the number of elements to choose from is n and elements chosen is r]
Does anyone know if this is doable?
You would first need to impose some sort of ordering on the set of all combinations available for a given n and r, such that a linear index makes sense. I suggest we agree to keep our combinations in increasing order (or, at least, the indices of the individual elements), as in your example. How then can we go from a linear index to a combination?
Let us first build some intuition for the problem. Suppose we have n = 5 (e.g. the set {0, 1, 2, 3, 4}) and r = 3. How many unique combinations are there in this case? The answer is of course 5-choose-3, which evaluates to 10. Since we will sort our combinations in increasing order, consider for a minute how many combinations remain once we have exhausted all those starting with 0. This must be 4-choose-3, or 4 in total. In such a case, if we are looking for the combination at index 7 initially, this implies we must subtract 10 - 4 = 6 and search for the combination at index 1 in the set {1, 2, 3, 4}. This process continues until we find a new index that is smaller than this offset.
Once this process concludes, we know the first digit. Then we only need to determine the remaining r - 1 digits! The algorithm thus takes shape as follows (in Python, but this should not be too difficult to translate),
from math import factorial
def choose(n, k):
return factorial(n) // (factorial(k) * factorial(n - k))
def combination_at_idx(idx, elems, r):
if len(elems) == r:
# We are looking for r elements in a list of size r - thus, we need
# each element.
return elems
if len(elems) == 0 or len(elems) < r:
return []
combinations = choose(len(elems), r) # total number of combinations
remains = choose(len(elems) - 1, r) # combinations after selection
offset = combinations - remains
if idx >= offset: # combination does not start with first element
return combination_at_idx(idx - offset, elems[1:], r)
# We now know the first element of the combination, but *not* yet the next
# r - 1 elements. These need to be computed as well, again recursively.
return [elems[0]] + combination_at_idx(idx, elems[1:], r - 1)
Test-driving this with your initial input,
N = 5
R = 3
for idx in range(choose(N, R)):
print(idx, combination_at_idx(idx, list(range(N)), R))
I find,
0 [0, 1, 2]
1 [0, 1, 3]
2 [0, 1, 4]
3 [0, 2, 3]
4 [0, 2, 4]
5 [0, 3, 4]
6 [1, 2, 3]
7 [1, 2, 4]
8 [1, 3, 4]
9 [2, 3, 4]
Where the linear index is zero-based.
Start with the first element of the result. The value of that element depends on the number of combinations you can get with smaller elements. For each such smaller first element, the number of combinations with first element k is n − k − 1 choose r − 1, with potentially some of-by-one corrections. So you would sum over a bunch of binomial coefficients. Wolfram Alpha can help you compute such a sum, but the result still has a binomial coefficient in it. Solving for the largest k such that the sum doesn't exceed your given index i is a computation you can't do with something as simple as e.g. a square root. You need a loop to test possible values, e.g. like this:
def first_naive(i, n, r):
"""Find first element and index of first combination with that first element.
Returns a tuple of value and index.
Example: first_naive(8, 5, 3) returns (1, 6) because the combination with
index 8 is [1, 3, 4] so it starts with 1, and because the first combination
that starts with 1 is [1, 2, 3] which has index 6.
"""
s1 = 0
for k in range(n):
s2 = s1 + choose(n - k - 1, r - 1)
if i < s2:
return k, s1
s1 = s2
You can reduce the O(n) loop iterations to O(log n) steps using bisection, which is particularly relevant for large n. In that case I find it easier to think about numbering items from the end of your list. In the case of n = 5 and r = 3 you get choose(2, 2)=1 combinations starting with 2, choose(3,2)=3 combinations starting with 1 and choose(4,2)=6 combinations starting with 0. So in the general choose(n,r) binomial coefficient you increase the n with each step, and keep the r. Taking into account that sum(choose(k,r) for k in range(r,n+1)) can be simplified to choose(n+1,r+1), you can eventually come up with bisection conditions like the following:
def first_bisect(i, n, r):
nCr = choose(n, r)
k1 = r - 1
s1 = nCr
k2 = n
s2 = 0
while k2 - k1 > 1:
k3 = (k1 + k2) // 2
s3 = nCr - choose(k3, r)
if s3 <= i:
k2, s2 = k3, s3
else:
k1, s1 = k3, s3
return n - k2, s2
Once you know the first element to be k, you also know the index of the first combination with that same first element (also returned from my function above). You can use the difference between that first index and your actual index as input to a recursive call. The recursive call would be for r − 1 elements chosen from n − k − 1. And you'd add k + 1 to each element from the recursive call, since the top level returns values starting at 0 while the next element has to be greater than k in order to avoid duplication.
def combination(i, n, r):
"""Compute combination with a given index.
Equivalent to list(itertools.combinations(range(n), r))[i].
Each combination is represented as a tuple of ascending elements, and
combinations are ordered lexicograplically.
Args:
i: zero-based index of the combination
n: number of possible values, will be taken from range(n)
r: number of elements in result list
"""
if r == 0:
return []
k, ik = first_bisect(i, n, r)
return tuple([k] + [j + k + 1 for j in combination(i - ik, n - k - 1, r - 1)])
I've got a complete working example, including an implementation of choose, more detailed doc strings and tests for some basic assumptions.

Given a list of coefficients, create a polynomial

I want to create a polynomial with given coefficients. This seems very simple but what I have found till now did not appear to be the thing I desired.
For example in such an environment;
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
Given a list/vector v of length n (I will set this n and v at the begining), I want to get the polynomial v(x) as v[i]*x^i.
(Actually after that I am going to build the quotient ring GF(4,'a')[x] /< x^n-v(x) > after getting this v(x) from above) then I will say;
S = R.quotient(x^n-v(x), 'y')
y = S.gen()
But I couldn't write it.
This is a frequently asked question in many places so it is better to leave it here as an answer although the answer I have is so simple:
I just wrote R(v) and it gave me the polynomial:
sage
n = 11
K = GF(4,'a')
R = PolynomialRing(GF(4,'a'),"x")
x = R.gen()
a = K.gen()
v = [1,a,0,0,1,1,1,a,a,0,1]
R(v)
x^10 + a*x^8 + a*x^7 + x^6 + x^5 + x^4 + a*x + 1
Basically (that is, ignoring the specifics of your polynomial ring) you have a list/vector v of length n and you require a polynomial which is the sum of all v[i]*x^i. Note that this sum equals the matrix product V.X where V is a one row matrix (essentially equal to the vector v) and X is a column matrix consisting of powers of x. In Maxima you could write
v: [1,a,0,0,1,1,1,a,a,0,1]$
n: length(v)$
V: matrix(v)$
X: genmatrix(lambda([i,j], x^(i-1)), n, 1)$
V.X;
The output is
x^10+ax^8+ax^7+x^6+x^5+x^4+a*x+1

how to compute the original vector from a distance matrix?

I have a small question about vector and matrix.
Suppose a vector V = {v1, v2, ..., vn}. I generate a n-by-n distance matrix M defined as:
M_ij = | v_i - v_j | such that i,j belong to [1, n].
That is, each element M_ij in the square matrix is the absolute distance of two elements in V.
For example, I have a vector V = {1, 3, 3, 5}, the distance matrix will be
M=[
0 2 2 4;
2 0 0 2;
2 0 0 2;
4 2 2 0; ]
It seems pretty simple. Now comes to the question. Given such a matrix M, how to obtain the initial V?
Thank you.
Based on some answer for this question, it seems that the answer is not unique. So, now suppose that all the initial vector has been normalized to 0 mean and 1 variance. The question is: Given such a symmetric distance matrix M, how to decide the initial normalized vector?
You can't. To give you an idea of why, consider these two cases:
V1 = {1,2,3}
M1 = [ 0 1 2 ; 1 0 1 ; 2 1 0 ]
V2 = {3,4,5}
M2 = [ 0 1 2 ; 1 0 1 ; 2 1 0 ]
As you can see, a single M could be the result of more than one V. Therefore, you can't map backwards.
There is no way to determine the answer uniquely, since the distance matrix is invariant to adding a constant to all elements and to multiplying all the values by -1. Assuming that element 1 is equal to 0, and that the first nonzero element is positive, however, you can find an answer. Here is the pseudocode:
# Assume v[1] is 0
v[1] = 0
# e is value of first non-zero vector element
e = 0
# ei is index of first non-zero vector element
ei = 0
for i = 2...n:
# if all vector elements have been 0 so far
if e == 0:
# get the current distance from element 1 and its index
# this new element may still be 0
e = d[1,i]
ei = i
v[i] = e
elseif d[1,i] == d[ei,i] + v[ei]: # v[i] <= v[1]
# v[i] is to the left of v[1] (assuming v[ei] > v[1])
v[i] = -d[1,i]
else:
# some other case; v[i] is to the right of v[1]
v[i] = d[1,i]
I don't think it is possible to find the original vector, but you can find a translation of the vector by taking the first row of the matrix.
If you let M_ij = | v_i - v_j | and you translate all v_k for k\in [1,n] you will get
M_ij = | v-i + 1 - v_j + 1 |
= | v_i - v_j |
Hence, just take the first row as the vector and find one initial point to translate the vector to.
Correction:
Let v_1 = 0, and let l_k = | v_k | for k\in [2,n] and p_k the parity of v_k
Let p_1 = 1
for(int i = 2; i < n; i++)
if( | l_i - l_(i+1) | != M_i(i+1) )
p_(i+1) = - p_i
else
p_(i+1) = p_i
doing this for all v_k for k\in [2,n] in order will show the parity of each v_k in respect to the others
Then you can find a translation of the original vector with the same or opposite direction
Update (For Normalized vector):
Let d = Sqrt(v_1^2 + v_2^2 + ... + v_n^2)
Vector = {0, v_1 / d, v_2 / d, ... , v_n / d}
or
{0, -v_1 / d, -v_2 / d, ... , -v_n / d}

Resources