This is a continuation of the two questions posted here,
Declaring a functional recursive sequence in Matlab
Nesting a specific recursion in Pari-GP
To make a long story short, I've constructed a family of functions which solve the tetration functional equation. I've proven these things are holomorphic. And now it's time to make the graphs, or at least, somewhat passable code to evaluate these things. I've managed to get to about 13 significant digits in my precision, but if I try to get more, I encounter a specific error. That error is really nothing more than an overflow error. But it's a peculiar overflow error; Pari-GP doesn't seem to like nesting the logarithm.
My particular mathematical function is approximated by taking something large (think of the order e^e^e^e^e^e^e) to produce something small (of the order e^(-n)). The math inherently requires samples of large values to produce these small values. And strangely, as we get closer to numerically approximating (at about 13 significant digits or so), we also get closer to overflowing because we need such large values to get those 13 significant digits. I am a god awful programmer; and I'm wondering if there could be some work around I'm not seeing.
/*
This function constructs the approximate Abel function
The variable z is the main variable we care about; values of z where real(z)>3 almost surely produces overflow errors
The variable l is the multiplier of the approximate Abel function
The variable n is the depth of iteration required
n can be set to 100, but produces enough accuracy for about 15
The functional equation this satisfies is exp(beta_function(z,l,n))/(1+exp(-l*z)) = beta_function(z+1,l,n); and this program approaches the solution for n to infinity
*/
beta_function(z,l,n) =
{
my(out = 0);
for(i=0,n-1,
out = exp(out)/(exp(l*(n-i-z)) +1));
out;
}
/*
This function is the error term between the approximate Abel function and the actual Abel function
The variable z is the main variable we care about
The variable l is the multiplier
The variable n is the depth of iteration inherited from beta_function
The variable k is the new depth of iteration for this function
n can be set about 100, still; but 15 or 20 is more optimal.
Setting the variable k above 10 will usually produce overflow errors unless the complex arguments of l and z are large.
Precision of about 10 digits is acquired at k = 5 or 6 for real z, for complex z less precision is acquired. k should be set to large values for complex z and l with large imaginary arguments.
*/
tau_K(z,l,n,k)={
if(k == 1,
-log(1+exp(-l*z)),
log(1 + tau_K(z+1,l,n,k-1)/beta_function(z+1,l,n)) - log(1+exp(-l*z))
)
}
/*
This is the actual Abel function
The variable z is the main variable we care about
The variable l is the multiplier
The variable n is the depth of iteration inherited from beta_function
The variable k is the depth of iteration inherited from tau_K
The functional equation this satisfies is exp(Abl_L(z,l,n,k)) = Abl_L(z+1,l,n,k); and this function approaches that solution for n,k to infinity
*/
Abl_L(z,l,n,k) ={
beta_function(z,l,n) + tau_K(z,l,n,k);
}
This is the code for approximating the functions I've proven are holomorphic; but sadly, my code is just horrible. Here, is attached some expected output, where you can see the functional equation being satisfied for about 10 - 13 significant digits.
Abl_L(1,log(2),100,5)
%52 = 0.1520155156321416705967746811
exp(Abl_L(0,log(2),100,5))
%53 = 0.1520155156321485241351294757
Abl_L(1+I,0.3 + 0.3*I,100,14)
%59 = 0.3353395055605129001249035662 + 1.113155080425616717814647305*I
exp(Abl_L(0+I,0.3 + 0.3*I,100,14))
%61 = 0.3353395055605136611147422467 + 1.113155080425614418399986325*I
Abl_L(0.5+5*I, 0.2+3*I,100,60)
%68 = -0.2622549204469267170737985296 + 1.453935357725113433325798650*I
exp(Abl_L(-0.5+5*I, 0.2+3*I,100,60))
%69 = -0.2622549205108654273925182635 + 1.453935357685525635276573253*I
Now, you'll notice I have to change the k value for different values. When the arguments z,l are further away from the real axis, we can make k very large (and we have to to get good accuracy), but it'll still overflow eventually; typically once we've achieved about 13-15 significant digits, is when the functions will start to blow up. You'll note, that setting k =60, means we're taking 60 logarithms. This already sounds like a bad idea, lol. Mathematically though, the value Abl_L(z,l,infinity,infinity) is precisely the function I want. I know that must be odd; nested infinite for-loops sounds like nonsense, lol.
I'm wondering if anyone can think of a way to avoid these overflow errors and obtaining a higher degree of accuracy. In a perfect world, this object most definitely converges, and this code is flawless (albeit, it may be a little slow); but we'd probably need to increase the stacksize indefinitely. In theory this is perfectly fine; but in reality, it's more than impractical. Is there anyway, as a programmer, one can work around this?
The only other option I have at this point is to try and create a bruteforce algorithm to discover the Taylor series of this function; but I'm having less than no luck at doing this. The process is very unique, and trying to solve this problem using Taylor series kind of takes us back to square one. Unless, someone here can think of a fancy way of recovering Taylor series from this expression.
I'm open to all suggestions, any comments, honestly. I'm at my wits end; and I'm wondering if this is just one of those things where the only solution is to increase the stacksize indefinitely (which will absolutely work). It's not just that I'm dealing with large numbers. It's that I need larger and larger values to compute a small value. For that reason, I wonder if there's some kind of quick work around I'm not seeing. The error Pari-GP spits out is always with tau_K, so I'm wondering if this has been coded suboptimally; and that I should add something to it to reduce stacksize as it iterates. Or, if that's even possible. Again, I'm a horrible programmer. I need someone to explain this to me like I'm in kindergarten.
Any help, comments, questions for clarification, are more than welcome. I'm like a dog chasing his tail at this point; wondering why he can't take 1000 logarithms, lol.
Regards.
EDIT:
I thought I'd add in that I can produce arbitrary precision but we have to keep the argument of z way off in the left half plane. If the variables n,k = -real(z) then we can produce arbitrary accuracy by making n as large as we want. Here's some output to explain this, where I've used \p 200 and we pretty much have equality at this level (minus some digits).
Abl_L(-1000,1+I,1000,1000)
%16 = -0.29532276871494189936534470547577975723321944770194434340228137221059739121428422475938130544369331383702421911689967920679087535009910425871326862226131457477211238400580694414163545689138863426335946 + 1.5986481048938885384507658431034702033660039263036525275298731995537068062017849201570422126715147679264813047746465919488794895784667843154275008585688490133825421586142532469402244721785671947462053*I
exp(Abl_L(-1001,1+I,1000,1000))
%17 = -0.29532276871494189936534470547577975723321944770194434340228137221059739121428422475938130544369331383702421911689967920679087535009910425871326862226131457477211238400580694414163545689138863426335945 + 1.5986481048938885384507658431034702033660039263036525275298731995537068062017849201570422126715147679264813047746465919488794895784667843154275008585688490133825421586142532469402244721785671947462053*I
Abl_L(-900 + 2*I, log(2) + 3*I,900,900)
%18 = 0.20353875452777667678084511743583613390002687634123569448354843781494362200997943624836883436552749978073278597542986537166527005507457802227019178454911106220050245899257485038491446550396897420145640 - 5.0331931122239257925629364016676903584393129868620886431850253696250415005420068629776255235599535892051199267683839967636562292529054669236477082528566454129529102224074017515566663538666679347982267*I
exp(Abl_L(-901+2*I,log(2) + 3*I,900,900))
%19 = 0.20353875452777667678084511743583613390002687634123569448354843781494362200997943624836883436552749978073278597542986537166527005507457802227019178454911106220050245980468697844651953381258310669530583 - 5.0331931122239257925629364016676903584393129868620886431850253696250415005420068629776255235599535892051199267683839967636562292529054669236477082528566454129529102221938340371793896394856865112060084*I
Abl_L(-967 -200*I,12 + 5*I,600,600)
%20 = -0.27654907399026253909314469851908124578844308887705076177457491260312326399816915518145788812138543930757803667195961206089367474489771076618495231437711085298551748942104123736438439579713006923910623 - 1.6112686617153127854042520499848670075221756090591592745779176831161238110695974282839335636124974589920150876805977093815716044137123254329208112200116893459086654166069454464903158662028146092983832*I
exp(Abl_L(-968 -200*I,12 + 5*I,600,600))
%21 = -0.27654907399026253909314469851908124578844308887705076177457491260312326399816915518145788812138543930757803667195961206089367474489771076618495231437711085298551748942104123731995533634133194224880928 - 1.6112686617153127854042520499848670075221756090591592745779176831161238110695974282839335636124974589920150876805977093815716044137123254329208112200116893459086654166069454464833417170799085356582884*I
The trouble is, we can't just apply exp over and over to go forward and expect to keep the same precision. The trouble is with exp, which displays so much chaotic behaviour as you iterate it in the complex plane, that this is doomed to work.
Well, I answered my own question. #user207421 posted a comment, and I'm not sure if it meant what I thought it meant, but I think it got me to where I want. I sort of assumed that exp wouldn't inherit the precision of its argument, but apparently that's true. So all I needed was to define,
Abl_L(z,l,n,k) ={
if(real(z) <= -max(n,k),
beta_function(z,l,n) + tau_K(z,l,n,k),
exp(Abl_L(z-1,l,n,k)));
}
Everything works perfectly fine from here; of course, for what I need it for. So, I answered my own question, and it was pretty simple. I just needed an if statement.
Thanks anyway, to anyone who read this.
Can anybody please look at the image and tell me how the time is calculated for exponential algorithms i.e., 2^n and 3^n.
From the top row, we can see that when n = 10, it takes 10μs to perform the work. That means that each operation takes one microsecond.
The rows with 2n and 3n are computed by listing 2nμs and 3nμs in more convenient units. For example, 210μs = 1024μs is about 0.001s.
(It would have been nice for the table designer to explicitly indicate that each operation is one microsecond, since that would let you interpret the data more clearly or adjust it for cases where, say, each operation took one nanosecond.)
Hope this helps!
I have written a program in C where I allocate memory to store a matrix of dimensions n-by-n and then feed a linear algebra subroutine with. I'm having big troubles in understanding how to identify time complexity for these operations from a plot. Particularly, I'm interested in identify how CPU time scales as a function of n, where n is my size.
To do so, I created an array of n = 2, 4, 8, ..., 512 and I computed the CPU time for both the operations. I repeated this process 10000 times for each n and I took the mean eventually. I therefore come up with a second array that I can match with my array of n.
I've been suggested to print in double logarithmic plot, and I read here and here that, using this way, "powers shows up as a straight line" (2). This is the resulting figure (dgesv is the linear algebra subroutine I used).
Now, I'm guessing that my time complexity is O(log n) since I get straight lines for both my operations (I do not take into consideration the red line). I saw the shapes differences between, say, linear complexity, logarithmic complexity etc. But I still have doubts if I should say something about the time complexity of dgesv, for instance. I'm sure there's a way that I don't know at all, so I'd be glad if someone could help me in understanding how to look at this plot properly.
PS: if there's a specific community where to post this question, please let me know so I could move it avoiding much more mess here. Thanks everyone.
Take your yellow line, it appears to be going from (0.9, -2.6) to (2.7, 1.6), giving it a slope roughly equal to 2.5. As you're plotting log(t) versus log(n) this means that:
log(t) = 2.5 log(n) + c
or, exponentiating both sides:
t = exp(2.5 log(n) + c) = c' n^2.5
The power of 2.5 may be an underestimate as your dsegv likely has a cost of 2/3 n^3 (though O(n^2.5) is theoretically possible).
First off, apologies if there is a better way to format math equations, I could not find anything, but alas, the expressions are pretty short.
As part of an assigned problem I have to produce some code in C that will evaluate x^n/n! for an arbitrary x, and n = { 1-10 , 50, 100}
I can always brute force it with a large number library, but I am wondering if someone with better math skills then mine can suggest a better algorithm than something with a O(n!)...
I understand that I can split the numerator to x^(n/2)x^(n/2) for even values of n, and xx^(n-1/2)*x^(n-1/2) for odd values of n. And that I can further change that into a logarithm base x of n/2.
But I am stuck for multiple reasons:
1 - I do not think that computationally any of these changes actually make a lot of difference since they are not really helping me reduce the large number multiplications I have to perform, or their overall number.
2 - Even as I think of n! as 1*2*3*...*(n-1)*n, I still cannot rationalize a good way to simplify the overall equation.
3 - I have looked at Karatsuba's algorithm for multiplications, and although it is a possibility, it seems a bit complex for an intro to programming problem.
So I am wondering if you guys can think of any middle ground. I prefer explanations to straight answers if you have the time :)
Cheers,
My advice is to compute all the terms of the summation (put them in an array), and then sum them up in reverse order (i.e., smallest to largest) -- that reduces rounding error a little bit.
Note that you can compute the k-th term from the preceding one by multiplying by x/k -- you do not need to ever compute x^n or n! directly (this is important).
I have been researching the log-sum-exp problem. I have a list of numbers stored as logarithms which I would like to sum and store in a logarithm.
the naive algorithm is
def naive(listOfLogs):
return math.log10(sum(10**x for x in listOfLogs))
many websites including:
logsumexp implementation in C?
and
http://machineintelligence.tumblr.com/post/4998477107/
recommend using
def recommend(listOfLogs):
maxLog = max(listOfLogs)
return maxLog + math.log10(sum(10**(x-maxLog) for x in listOfLogs))
aka
def recommend(listOfLogs):
maxLog = max(listOfLogs)
return maxLog + naive((x-maxLog) for x in listOfLogs)
what I don't understand is if recommended algorithm is better why should we call it recursively?
would that provide even more benefit?
def recursive(listOfLogs):
maxLog = max(listOfLogs)
return maxLog + recursive((x-maxLog) for x in listOfLogs)
while I'm asking are there other tricks to make this calculation more numerically stable?
Some background for others: when you're computing an expression of the following type directly
ln( exp(x_1) + exp(x_2) + ... )
you can run into two kinds of problems:
exp(x_i) can overflow (x_i is too big), resulting in numbers that you can't add together
exp(x_i) can underflow (x_i is too small), resulting in a bunch of zeroes
If all the values are big, or all are small, we can divide by some exp(const) and add const to the outside of the ln to get the same value. Thus if we can pick the right const, we can shift the values into some range to prevent overflow/underflow.
The OP's question is, why do we pick max(x_i) for this const instead of any other value? Why don't we recursively do this calculation, picking the max out of each subset and computing the logarithm repeatedly?
The answer: because it doesn't matter.
The reason? Let's say x_1 = 10 is big, and x_2 = -10 is small. (These numbers aren't even very large in magnitude, right?) The expression
ln( exp(10) + exp(-10) )
will give you a value very close to 10. If you don't believe me, go try it. In fact, in general, ln( exp(x_1) + exp(x_2) + ... ) will give be very close to max(x_i) if some particular x_i is much bigger than all the others. (As an aside, this functional form, asymptotically, actually lets you mathematically pick the maximum from a set of numbers.)
Hence, the reason we pick the max instead of any other value is because the smaller values will hardly affect the result. If they underflow, they would have been too small to affect the sum anyway, because it would be dominated by the largest number and anything close to it. In computing terms, the contribution of the small numbers will be less than an ulp after computing the ln. So there's no reason to waste time computing the expression for the smaller values recursively if they will be lost in your final result anyway.
If you wanted to be really persnickety about implementing this, you'd divide by exp(max(x_i) - some_constant) or so to 'center' the resulting values around 1 to avoid both overflow and underflow, and that might give you a few extra digits of precision in the result. But avoiding overflow is much more important about avoiding underflow, because the former determines the result and the latter doesn't, so it's much simpler just to do it this way.
Not really any better to do it recursively. The problem's just that you want to make sure your finite-precision arithmetic doesn't swamp the answer in noise. By dealing with the max on its own, you ensure that any junk is kept small in the final answer because the most significant component of it is guaranteed to get through.
Apologies for the waffly explanation. Try it with some numbers yourself (a sensible list to start with might be [1E-5,1E25,1E-5]) and see what happens to get a feel for it.
As you have defined it, your recursive function will never terminate. That's because ((x-maxlog) for x in listOfLogs) still has the same number of elements as listOfLogs.
I don't think that this is easily fixable either, without significantly impacting either the performance or the precision (compared to the non-recursive version).