Related
I am trying to solve the following problem (I am using Matlab, though pseudo-code / solutions in other languages are welcome):
I have two circles on a Cartesian plane defined by their centroids (p1, p2) and their radii (r1, r2). circle 1 (c1 = [p1 r1]) is considered 'dynamic': it is being translated along the vector V = [0 -1]. circle 2 (c2 = [p2 r2]) is considered 'static': it lies in the path of c1 but the x component of its centroid is offset from the x component of c2 (otherwise the solution would be trivial: the distance between the circle centroids minus the sum of their radii).
I am trying to locate the distance (d) along V at which circle 1 will 'collide' with circle 2 (see the linked image). I am sure that I can solve this iteratively (i.e. translate c1 to the bounding box of c2 then converge / test for intersection). However, I would like to know if there is a closed form solution to this problem.
Shift coordinates to simplify expressions
px = p1.x - p2.x
py = p1.y - p2.y
And solve quadratic equation for d (zero, one, or two solutions)
px^2 + (py - d)^2 = (r1 + r2)^2
(py - d)^2 = (r1 + r2)^2 - px^2
d = py +/- Sqrt((r1 + r2)^2 - px^2)
That's all.
As the question title does not match the question and accepted answer which is dependent on a fixed vector {0, -1}, or {0, 1} rather than an arbitrary vector I have added another solution that works for any unit vector.
Where (See diagram 1)
dx, dy is the unit vector of travel for circle c1
p1, p2 the centers of the moving circle c1 and static circle c2
r1, r2 the radius of each circle
The following will set d to the distance c1 must travel along dx, dy to collide with c2 if no collision the d will be set to Infinity
There are three cases when there is no solution
The moving circle is moving away from the static circle. u < 0
The moving circle never gets close enough to collide. dSq > rSq
The two circles are already overlapping. u < 0 luckily the math makes
this the same condition as moving away.
Note that if you ignore the sign of u (1 and 3) then d will be the distance to first (causal) contact going backward in time
Thus the pseudo code to find d
d = Infinity
rSq = (r1 + r2) ^ 2
u = (p1.x - p2.x) * dx + (p1.x - p2.x) * dy
if u >= 0
dSq = ((p2.x + dx * u) - p1.x) ^ 2 + ((p2.y + dy * u) - p1.y) ^ 2
if dSq <= rSq
d = u - (rSq - dSq) ^ 0.5
The point of contact can be found with
cpx = p1.x + dx * d;
cpy = p1.x + dy * d;
Diagram 1
I've got a situation in which I have 2 circles (C1 and C2)
and i need to find the line equation for the line that is tangent to both of these circles.
So as far as i'm aware, given a single point (P1) and C2's point and radius it is possible to quite easily get 2 possible points of tangency for C2 and P1 to make 2 line equations. But as i don't have P1, only the knowledge that the point will be one of a possible 2 points on C1, i'm not sure how to calculate this.
I assume it will be something along the lines of getting the 2 tangent line equations of C1 that are equal to the same of C2.
Both circles can have any radius, they could be the same or they could be hugely different. They will also never overlap (they can still touch though). And I'm looking for the 2 possible internal tangents.
Oh, and also, visuals would be very helpful haha :)
Let O be the intersection point between the line through the centers and the tangent.
Let d be the distance between the centers and h1, h2 be the distances between O and the centers. By similarity, these are proportional to the radii.
Hence,
h1 / h2 = r1 / r2 = m,
h1 + h2 = d,
giving
h1 = m d / (1 + m),
h2 = d / (1 + m).
Then the coordinates of O are found by interpolating between the centers
xo = (h2.x1 + h1.x2) / d
yo = (h2.y1 + h1.y2) / d
and the angle of the tangent is that of the line through the centers plus or minus the angle between this line and the tangent,
a = arctan((y2 - y1)/(x2 - x1)) +/- arcsin(r1 / h1).
You can write the implicit equation of the tangent as
cos(a).y - sin(a).x = cos(a).yo - sin(a).xo.
(source: imag.fr)
So we are going to use a homothetic transformation. If the circles C and C' have respectively centres O and O', and radius r and r', then we know there exists a unique homothetic transformation with centre J and ratio a, such that :
a = |JO|/|JO'| = r/r'
Noting AB is the vector from A to B, and |z| the norm of a vector z.
Hence you get J, knowing that it is between O and O' which we both already know.
Then with u the projection of JR on JO', and v the decomposition on its orthogonal, and considering the sine s and cosine c of the angle formed by O'JR, we have
|u| = |JR| * c
|v| = |JR| * s
c^2 + s^2 = 1
And finally because the triangle JRO' is right-angled in R :
s = r' / |JO|'
Putting all of this together, we get :
J = O + OO' / |OO'| * a / (a+1)
if |OJ| == r and |O'J| == r' then
return the orthogonal line to (OO') passing through J
|JR| = √( |JO'|^ - r'^2 )
s = r' / |JO'|
c = √( 1 - s^2 )
u = c * |JR| * OO' / |OO'|
w = (-u.y, u.x) % any orthogonal vector to u
v = s * |JR| * w / |w|
return lines corresponding to parametric equations J+t*(u+v) and J+t*(u-v)
I want to calculate a point on a given line that is perpendicular from a given point.
I have a line segment AB and have a point C outside line segment. I want to calculate a point D on AB such that CD is perpendicular to AB.
I have to find point D.
It quite similar to this, but I want to consider to Z coordinate also as it does not show up correctly in 3D space.
Proof:
Point D is on a line CD perpendicular to AB, and of course D belongs to AB.
Write down the Dot product of the two vectors CD.AB = 0, and express the fact D belongs to AB as D=A+t(B-A).
We end up with 3 equations:
Dx=Ax+t(Bx-Ax)
Dy=Ay+t(By-Ay)
(Dx-Cx)(Bx-Ax)+(Dy-Cy)(By-Ay)=0
Subtitute the first two equations in the third one gives:
(Ax+t(Bx-Ax)-Cx)(Bx-Ax)+(Ay+t(By-Ay)-Cy)(By-Ay)=0
Distributing to solve for t gives:
(Ax-Cx)(Bx-Ax)+t(Bx-Ax)(Bx-Ax)+(Ay-Cy)(By-Ay)+t(By-Ay)(By-Ay)=0
which gives:
t= -[(Ax-Cx)(Bx-Ax)+(Ay-Cy)(By-Ay)]/[(Bx-Ax)^2+(By-Ay)^2]
getting rid of the negative signs:
t=[(Cx-Ax)(Bx-Ax)+(Cy-Ay)(By-Ay)]/[(Bx-Ax)^2+(By-Ay)^2]
Once you have t, you can figure out the coordinates for D from the first two equations.
Dx=Ax+t(Bx-Ax)
Dy=Ay+t(By-Ay)
function getSpPoint(A,B,C){
var x1=A.x, y1=A.y, x2=B.x, y2=B.y, x3=C.x, y3=C.y;
var px = x2-x1, py = y2-y1, dAB = px*px + py*py;
var u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
var x = x1 + u * px, y = y1 + u * py;
return {x:x, y:y}; //this is D
}
There is a simple closed form solution for this (requiring no loops or approximations) using the vector dot product.
Imagine your points as vectors where point A is at the origin (0,0) and all other points are referenced from it (you can easily transform your points to this reference frame by subtracting point A from every point).
In this reference frame point D is simply the vector projection of point C on the vector B which is expressed as:
// Per wikipedia this is more efficient than the standard (A . Bhat) * Bhat
Vector projection = Vector.DotProduct(A, B) / Vector.DotProduct(B, B) * B
The result vector can be transformed back to the original coordinate system by adding point A to it.
A point on line AB can be parametrized by:
M(x)=A+x*(B-A), for x real.
You want D=M(x) such that DC and AB are orthogonal:
dot(B-A,C-M(x))=0.
That is: dot(B-A,C-A-x*(B-A))=0, or dot(B-A,C-A)=x*dot(B-A,B-A), giving:
x=dot(B-A,C-A)/dot(B-A,B-A) which is defined unless A=B.
What you are trying to do is called vector projection
Here i have converted answered code from "cuixiping" to matlab code.
function Pr=getSpPoint(Line,Point)
% getSpPoint(): find Perpendicular on a line segment from a given point
x1=Line(1,1);
y1=Line(1,2);
x2=Line(2,1);
y2=Line(2,1);
x3=Point(1,1);
y3=Point(1,2);
px = x2-x1;
py = y2-y1;
dAB = px*px + py*py;
u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
x = x1 + u * px;
y = y1 + u * py;
Pr=[x,y];
end
I didn't see this answer offered, but Ron Warholic had a great suggestion with the Vector Projection. ACD is merely a right triangle.
Create the vector AC i.e (Cx - Ax, Cy - Ay)
Create the Vector AB i.e (Bx - Ax, By - Ay)
Dot product of AC and AB is equal to the cosine of the angle between the vectors. i.e cos(theta) = ACx*ABx + ACy*ABy.
Length of a vector is sqrt(x*x + y*y)
Length of AD = cos(theta)*length(AC)
Normalize AB i.e (ABx/length(AB), ABy/length(AB))
D = A + NAB*length(AD)
For anyone who might need this in C# I'll save you some time:
double Ax = ;
double Ay = ;
double Az = ;
double Bx = ;
double By = ;
double Bz = ;
double Cx = ;
double Cy = ;
double Cz = ;
double t = ((Cx - Ax) * (Bx - Ax) + (Cy - Ay) * (By - Ay)) / (Math.Pow(Bx - Ax, 2) + Math.Pow(By - Ay, 2));
double Dx = Ax + t*(Bx - Ax);
double Dy = Ay + t*(By - Ay);
Here is another python implementation without using a for loop. It works for any number of points and any number of line segments. Given p_array as a set of points, and x_array , y_array as continues line segments or a polyline.
This uses the equation Y = mX + n and considering that the m factor for a perpendicular line segment is -1/m.
import numpy as np
def ortoSegmentPoint(self, p_array, x_array, y_array):
"""
:param p_array: np.array([[ 718898.941 9677612.901 ], [ 718888.8227 9677718.305 ], [ 719033.0528 9677770.692 ]])
:param y_array: np.array([9677656.39934991 9677720.27550726 9677754.79])
:param x_array: np.array([718895.88881594 718938.61392781 718961.46])
:return: [POINT, LINE] indexes where point is orthogonal to line segment
"""
# PENDIENTE "m" de la recta, y = mx + n
m_array = np.divide(y_array[1:] - y_array[:-1], x_array[1:] - x_array[:-1])
# PENDIENTE INVERTIDA, 1/m
inv_m_array = np.divide(1, m_array)
# VALOR "n", y = mx + n
n_array = y_array[:-1] - x_array[:-1] * m_array
# VALOR "n_orto" PARA LA RECTA PERPENDICULAR
n_orto_array = np.array(p_array[:, 1]).reshape(len(p_array), 1) + inv_m_array * np.array(p_array[:, 0]).reshape(len(p_array), 1)
# PUNTOS DONDE SE INTERSECTAN DE FORMA PERPENDICULAR
x_intersec_array = np.divide(n_orto_array - n_array, m_array + inv_m_array)
y_intersec_array = m_array * x_intersec_array + n_array
# LISTAR COORDENADAS EN PARES
x_coord = np.array([x_array[:-1], x_array[1:]]).T
y_coord = np.array([y_array[:-1], y_array[1:]]).T
# FILAS: NUMERO DE PUNTOS, COLUMNAS: NUMERO DE TRAMOS
maskX = np.where(np.logical_and(x_intersec_array < np.max(x_coord, axis=1), x_intersec_array > np.min(x_coord, axis=1)), True, False)
maskY = np.where(np.logical_and(y_intersec_array < np.max(y_coord, axis=1), y_intersec_array > np.min(y_coord, axis=1)), True, False)
mask = maskY * maskX
return np.argwhere(mask == True)
As Ron Warholic and Nicolas Repiquet answered, this can be solved using vector projection. For completeness I'll add a python/numpy implementation of this here in case it saves anyone else some time:
import numpy as np
# Define some test data that you can solve for directly.
first_point = np.array([4, 4])
second_point = np.array([8, 4])
target_point = np.array([6, 6])
# Expected answer
expected_point = np.array([6, 4])
# Create vector for first point on line to perpendicular point.
point_vector = target_point - first_point
# Create vector for first point and second point on line.
line_vector = second_point - first_point
# Create the projection vector that will define the position of the resultant point with respect to the first point.
projection_vector = (np.dot(point_vector, line_vector) / np.dot(line_vector, line_vector)) * line_vector
# Alternative method proposed in another answer if for whatever reason you prefer to use this.
_projection_vector = (np.dot(point_vector, line_vector) / np.linalg.norm(line_vector)**2) * line_vector
# Add the projection vector to the first point
projected_point = first_point + projection_vector
# Test
(projected_point == expected_point).all()
Since you're not stating which language you're using, I'll give you a generic answer:
Just have a loop passing through all the points in your AB segment, "draw a segment" to C from them, get the distance from C to D and from A to D, and apply pithagoras theorem. If AD^2 + CD^2 = AC^2, then you've found your point.
Also, you can optimize your code by starting the loop by the shortest side (considering AD and BD sides), since you'll find that point earlier.
Here is a python implementation based on Corey Ogburn's answer from this thread.
It projects the point q onto the line segment defined by p1 and p2 resulting in the point r.
It will return null if r falls outside of line segment:
def is_point_on_line(p1, p2, q):
if (p1[0] == p2[0]) and (p1[1] == p2[1]):
p1[0] -= 0.00001
U = ((q[0] - p1[0]) * (p2[0] - p1[0])) + ((q[1] - p1[1]) * (p2[1] - p1[1]))
Udenom = math.pow(p2[0] - p1[0], 2) + math.pow(p2[1] - p1[1], 2)
U /= Udenom
r = [0, 0]
r[0] = p1[0] + (U * (p2[0] - p1[0]))
r[1] = p1[1] + (U * (p2[1] - p1[1]))
minx = min(p1[0], p2[0])
maxx = max(p1[0], p2[0])
miny = min(p1[1], p2[1])
maxy = max(p1[1], p2[1])
is_valid = (minx <= r[0] <= maxx) and (miny <= r[1] <= maxy)
if is_valid:
return r
else:
return None
How can I find the line of intersection between two planes?
I know the mathematics idea, and I did the cross product between the the planes normal vectors
but how to get the line from the resulted vector programmatically
The equation of the plane is ax + by + cz + d = 0, where (a,b,c) is the plane's normal, and d is the distance to the origin. This means that every point (x,y,z) that satisfies that equation is a member of the plane.
Given two planes:
P1: a1x + b1y + c1z + d1 = 0
P2: a2x + b2y + c2z + d2 = 0
The intersection between the two is the set of points that verifies both equations. To find points along this line, you can simply pick a value for x, any value, and then solve the equations for y and z.
y = (-c1z -a1x -d1) / b1
z = ((b2/b1)*(a1x+d1) -a2x -d2)/(c2 - c1*b2/b1)
If you make x=0, this gets simpler:
y = (-c1z -d1) / b1
z = ((b2/b1)*d1 -d2)/(c2 - c1*b2/b1)
Finding the line between two planes can be calculated using a simplified version of the 3-plane intersection algorithm.
The 2'nd, "more robust method" from bobobobo's answer references the 3-plane intersection.
While this works well for 2 planes (where the 3rd plane can be calculated using the cross product of the first two), the problem can be further reduced for the 2-plane version.
No need to use a 3x3 matrix determinant,instead we can use the squared length of the cross product between the first and second plane (which is the direction of the 3'rd plane).
No need to include the 3rd planes distance,(calculating the final location).
No need to negate the distances.Save some cpu-cycles by swapping the cross product order instead.
Including this code-example, since it may not be immediately obvious.
// Intersection of 2-planes: a variation based on the 3-plane version.
// see: Graphics Gems 1 pg 305
//
// Note that the 'normal' components of the planes need not be unit length
bool isect_plane_plane_to_normal_ray(
const Plane& p1, const Plane& p2,
// output args
Vector3f& r_point, Vector3f& r_normal)
{
// logically the 3rd plane, but we only use the normal component.
const Vector3f p3_normal = p1.normal.cross(p2.normal);
const float det = p3_normal.length_squared();
// If the determinant is 0, that means parallel planes, no intersection.
// note: you may want to check against an epsilon value here.
if (det != 0.0) {
// calculate the final (point, normal)
r_point = ((p3_normal.cross(p2.normal) * p1.d) +
(p1.normal.cross(p3_normal) * p2.d)) / det;
r_normal = p3_normal;
return true;
}
else {
return false;
}
}
Adding this answer for completeness, since at time of writing, none of the answers here contain a working code-example which directly addresses the question.
Though other answers here already covered the principles.
Finding a point on the line
To get the intersection of 2 planes, you need a point on the line and the direction of that line.
Finding the direction of that line is really easy, just cross the 2 normals of the 2 planes that are intersecting.
lineDir = n1 × n2
But that line passes through the origin, and the line that runs along your plane intersections might not. So, Martinho's answer provides a great start to finding a point on the line of intersection (basically any point that is on both planes).
In case you wanted to see the derivation for how to solve this, here's the math behind it:
First let x=0. Now we have 2 unknowns in 2 equations instead of 3 unknowns in 2 equations (we arbitrarily chose one of the unknowns).
Then the plane equations are (A terms were eliminated since we chose x=0):
B1y + C1z + D1 = 0
B2y + C2z + D2 = 0
We want y and z such that those equations are both solved correctly (=0) for the B1, C1 given.
So, just multiply the top eq by (-B2/B1) to get
-B2y + (-B2/B1)*C1z + (-B2/B1)*D1 = 0
B2y + C2z + D2 = 0
Add the eqs to get
z = ( (-B2/B1)*D1 - D2 ) / (C2 * B2/B1)*C1)
Throw the z you find into the 1st equation now to find y as
y = (-D1 - C1z) / B1
Note the best variable to make 0 is the one with the lowest coefficients, because it carries no information anyway. So if C1 and C2 were both 0, choosing z=0 (instead of x=0) would be a better choice.
The above solution can still screw up if B1=0 (which isn't that unlikely). You could add in some if statements that check if B1=0, and if it is, be sure to solve for one of the other variables instead.
Solution using intersection of 3 planes
From user's answer, a closed form solution for the intersection of 3 planes was actually in Graphics Gems 1. The formula is:
P_intersection = (( point_on1 • n1 )( n2 × n3 ) + ( point_on2 • n2 )( n3 × n1 ) + ( point_on3 • n3 )( n1 × n2 )) / det(n1,n2,n3)
Actually point_on1 • n1 = -d1 (assuming you write your planes Ax + By + Cz + D=0, and not =-D). So, you could rewrite it as:
P_intersection = (( -d1 )( n2 × n3 ) + ( -d2 )( n3 × n1 ) + ( -d3 )( n1 × n2 )) / det(n1,n2,n3)
A function that intersects 3 planes:
// Intersection of 3 planes, Graphics Gems 1 pg 305
static Vector3f getIntersection( const Plane& plane1, const Plane& plane2, const Plane& plane3 )
{
float det = Matrix3f::det( plane1.normal, plane2.normal, plane3.normal ) ;
// If the determinant is 0, that means parallel planes, no intn.
if( det == 0.f ) return 0 ; //could return inf or whatever
return ( plane2.normal.cross( plane3.normal )*-plane1.d +
plane3.normal.cross( plane1.normal )*-plane2.d +
plane1.normal.cross( plane2.normal )*-plane3.d ) / det ;
}
Proof it works (yellow dot is intersection of rgb planes here)
Getting the line
Once you have a point of intersection common to the 2 planes, the line just goes
P + t*d
Where P is the point of intersection, t can go from (-inf, inf), and d is the direction vector that is the cross product of the normals of the two original planes.
The line of intersection between the red and blue planes looks like this
Efficiency and stability
The "robust" (2nd way) takes 48 elementary ops by my count, vs the 36 elementary ops that the 1st way (isolation of x,y) uses. There is a trade off between stability and # computations between these 2 ways.
It'd be pretty catastrophic to get (0,inf,inf) back from a call to the 1st way in the case that B1 was 0 and you didn't check. So adding in if statements and making sure not to divide by 0 to the 1st way may give you the stability at the cost of code bloat, and the added branching (which might be quite expensive). The 3 plane intersection method is almost branchless and won't give you infinities.
This method avoids division by zero as long as the two planes are not parallel.
If these are the planes:
A1*x + B1*y + C1*z + D1 = 0
A2*x + B2*y + C2*z + D2 = 0
1) Find a vector parallel to the line of intersection. This is also the normal of a 3rd plane which is perpendicular to the other two planes:
(A3,B3,C3) = (A1,B1,C1) cross (A2,B2,C2)
2) Form a system of 3 equations. These describe 3 planes which intersect at a point:
A1*x1 + B1*y1 + C1*z1 + D1 = 0
A2*x1 + B2*y1 + C2*z1 + D2 = 0
A3*x1 + B3*y1 + C3*z1 = 0
3) Solve them to find x1,y1,z1. This is a point on the line of intersection.
4) The parametric equations of the line of intersection are:
x = x1 + A3 * t
y = y1 + B3 * t
z = z1 + C3 * t
The determinant-based approach is neat, but it's hard to follow why it works.
Here's another way that's more intuitive.
The idea is to first go from the origin to the closest point on the first plane (p1), and then from there go to the closest point on the line of intersection of the two planes. (Along a vector that I'm calling v below.)
Given
=====
First plane: n1 • r = k1
Second plane: n2 • r = k2
Working
=======
dir = n1 × n2
p1 = (k1 / (n1 • n1)) * n1
v = n1 × dir
pt = LineIntersectPlane(line = (p1, v), plane = (n2, k2))
LineIntersectPlane
==================
#We have n2 • (p1 + lambda * v) = k2
lambda = (k2 - n2 • p1) / (n2 • v)
Return p1 + lambda * v
Output
======
Line where two planes intersect: (pt, dir)
This should give the same point as the determinant-based approach. There's almost certainly a link between the two. At least the denominator, n2 • v, is the same, if we apply the "scalar triple product" rule. So these methods are probably similar as far as condition numbers go.
Don't forget to check for (almost) parallel planes. For example: if (dir • dir < 1e-8) should work well if unit normals are used.
You can find the formula for the intersection line of two planes in this link.
P1: a1x + b1y + c1z = d1
P2: a2x + b2y + c2z = d2
n1=(a1,b1,c1); n2=(a2,b2,c2); n12=Norm[Cross[n1,n2]]^2
If n12 != 0
a1 = (d1*Norm[n2]^2 - d2*n1.n2)/n12;
a2 = (d2*Norm[n1]^2 - d1*n1.n2)/n12;
P = a1 n1 + a2 n2;
(*formula for the intersection line*)
Li[t_] := P + t*Cross[n1, n2];
The cross product of the line is the direction of the intersection line. Now you need a point in the intersection.
You can do this by taking a point on the cross product, then subtracting Normal of plane A * distance to plane A and Normal of plane B * distance to plane b. Cleaner:
p = Point on cross product
intersection point = ([p] - ([Normal of plane A] * [distance from p to plane A]) - ([Normal of plane B] * [distance from p to plane B]))
Edit:
You have two planes with two normals:
N1 and N2
The cross product is the direction of the Intersection Line:
C = N1 x N2
The class above has a function to calculate the distance between a point and a plane. Use it to get the distance of some point p on C to both planes:
p = C //p = 1 times C to get a point on C
d1 = plane1.getDistance(p)
d2 = plane2.getDistance(p)
Intersection line:
resultPoint1 = (p - (d1 * N1) - (d2 * N2))
resultPoint2 = resultPoint1 + C
I have a circle. Inside the circle is a point. I have a vector originating at this point. I'd like to know what point on the circle this vector intersects. Here is a drawing:
http://n4te.com/temp/circle.png http://n4te.com/temp/circle.png
The red dot is the point I am trying to determine.
I know these things: the center of the circle, the origin of the vector, and the direction of the vector.
I know this is basic stuff, but I'm still having trouble. Most of the Googlings bring me to line-circle collision, which is related but not quite the same. Thanks for any help you can provide!
Elementary vector algebra.
O — center of circle (vector)
r — its radius (scalar)
A — origin of ray (vector)
k — direction of ray (vector)
Solve (A + kt - O)² = r² for scalar t, choose positive root, and A + kt is your point.
Further explanation:
. is dot product, ² for a vector is dot product of the vector with itself. Expand LHS
(A + kt - O)² = (A - O)² + 2(k.(A - O))t + k²t².
The quadratic is k²t² + 2(k.(A - O))t + (A - O)² - r² = 0. In terms of your variables, this becomes (rayVX² + rayVY²)t² + 2(rayVX(rayX - circleX) + rayVY(rayY - circleY))t + (rayX - circleX)² + (rayY - circleY)² - r² = 0.
Much thanks to Anton Tykhyy for his detailed answer. This was the resulting Java code:
float xDiff = rayX - circleX;
float yDiff = rayY - circleY;
float a = rayVX * rayVX + rayVY * rayVY;
float b = 2 * (rayVX * (rayX - circleX) + rayVY * (rayY - circleY));
float c = xDiff * xDiff + yDiff * yDiff - r * r;
float disc = b * b - 4 * a * c;
if (disc >= 0) {
float t = (-b + (float)Math.sqrt(disc)) / (2 * a);
float x = rayX + rayVX * t;
float y = rayY + rayVY * t;
// Do something with point.
}