what kind of qr-like code is divided into 4 quarters - qr-code

I was wondering what kind of QR code does not sport squares in the corners and is divided into 4 quarters by a solid black line? I would like to replicate this, since I think they look more professional than the variety I have seen before, but I cannot find out what kind of code it would be?

It's a data matrix 2D barcode.
http://en.wikipedia.org/wiki/Data_Matrix
http://en.wikipedia.org/wiki/Barcode
It only looks divided into 4 blocks when you get above a certain size (such as 20x20 shown below)
http://jpgraph.net/download/manuals/chunkhtml/images/datamatrix-structure-details.png
This article talks more about these blocks (or more officially, 'Data Regions' or 'sub matrices'). See page 12 for a table of common sizes and data region breakdowns:
http://www.gs1.org/docs/barcodes/GS1_DataMatrix_Introduction_and_technical_overview.pdf
The matrix symbol (square or rectangle) will be composed of several
areas of data (or: Data Regions), which together encode the data.

Related

How to analyse spatial data using grid codes from a map

I would like to analyse movement data from a semi-captive animal population. We record their location every 5 mins using a location code which corresponds to a map of the reserve we have made ourselves. Each grid square represents 100 square meters, and has a letter and number to correspond with each grid square e.g. H5 or L6 (letters correlate with columns, whereas numbers correlate with rows.I would like to analyse differences in space use between three different periods of time, to answer questions such as do the animals move around more in certain periods, or are more restricted in their space use in other periods. Please can someone give me any indication of how to go about this? I have looked into spatial analysis in rstudio but haven't come across anything that doesn't use official maps or location co-ordinates. I've not done this type of analysis before so any help would be greatly appreciated! Thanks so much.

Moving points to a regular grid

I need to evenly distribute clumped 3D data. 2D solutions would be terrific. Up to many millions of data points.
I am looking for the best method to evenly distribute [ie fully populate a correctly sized grid] clumped 3D or 2D data.
Sorting in numerous directions numerous times, with a shake to separate clumps a little now & again, is the method currently used. It is known that it is far from optimum. In general sorting is no good because it spreads/flattens clumps of points across a single surface.
Triangulation would seemingly be best [de-warp back to a regular grid] however I could never get the proper hull and had other problems.
Pressure equalization type methods seem over the top.
Can anybody point me in the direction of information on this?
Thanks for your time.
Currently used [inadequate] code
1 - allocates indexes for sorting in various directions [side to side, then on diagonals],
2 - performs the sorts independently;
3 - allocates 2D locations from the sorts;
4 - averages the locations obtained from the different sorts;
5 - shakes [attempted side to side & up/down movement of whole dataset leaving duplicates static] to declump;
6 - repeat as required up to 11 times.
I presume the "best" result would be the minimum total movement from original locations to final grided locations.

Finding a quantity of anything between two points in space

I'm currently working towards a 3D model of this, but I thought I would start with 2D. Basically, I have a grid of longitude and latitude with NO2 concentrations across it. What I want to produce, at least for now, is a total amount of Nitrogen Dioxide between two points. Like so:
2DGrid
Basically, These two points are at different lats and lons and as I stated I want to find the amount of something between them. The tricky thing to me is that the model data I'm working with is gridded so I need to be able to account for the amount of something along a line at the lat and lons at which that line cuts through said grid.
Another approach, and maybe a better one for my purposes, could be visualized like this:3DGrid
Ultimately, I'd like to be able to create a program (within any language honestly) that could find the amount of "something" between two points in a 3D grid. If you would like specfics, the bottom altitude is the surface, the top grid is the top of the atmosphere. The bottom point is a measurement device looking at the sun during a certain time of day (and therefore having a certain zenith and azimuth angle). I want to find the NO2 between that measurement device and the "top of the atmosphere" which in my grid is just the top altitude level (of which there are 25).
I'm rather new to coding, stack exchange, and even the subject matter I'm working with so the sparse code I've made might end up creating more clutter than purely asking the question and seeing what methods/code you might suggest?
Hopefully my question is beneficial!
Best,
Taylor
To traverse all touched cells, you can use Amanatides-Woo algorithm. It is suitable both for 2D and for 3D case.
Implementation clues
To account for quantity used from every cell, you can apply some model. For example, calculate path length inside cell (as difference of enter and exit coordinates) and divide by normalizing factor to get cell weight (for example, byCellSize*Sqrt(3) for 3D case as diagonal length).

Colocalization in R / Cross-Correlation of 3D matrices

I hope this has not been asked before, but I am currently in the process of analyzing some microscopy pictures in R and I am not quite sure how to tackle this.
The situation is as follows:
- I have several pictures of different targets in cells which show spots of signal
- Some pictures show the same cells, but were aquired after others and are therefore a little "off" in x-, y- and z-direction
- Some, but by no means all of the pictures show colocalization = spots from one picture also show up on other pictures
Coming from the spot detection software, I now have data frames for all spots in each picture (one df per picture) with the x-, y- and z-coordinates.
I am now looking for
a) a way to align these matrices of spots from the different colors and thought that cross-correlation of the matrices might be a way to go (however, is there CC in 3D in R?)
b) a way to calculate the colocalization. As these are pictures and intrinsically noisy, even colocalized spots might have a little different coordinates. Is there a function of package in R which merges these data based on a threshold or other parameter of my choice?
Thanks a lot in advance for all your answers!!
Simon

Adding plotstick-like arrows to a scatterplot

This is my first post here, thought i have read a lot of your Q&A these last 6 months. I'm currently working on ADCP (Aquatic Doppler Current Profiler) data, handled by the "oce" package from Dan Kelley (a little bit of advertising for those who want to deal with oceanographic datas in R). I'm not very experienced in R, and i have read the question relative to abline for levelplot functions "How to add lines to a levelplot made using lattice (abline somehow not working)?".
What i currently have is a levelplot representing a time series of echo intensity (from backscattered signal, which is monitored in the same time as current is) data taken in 10m of depth, this 10m depth line is parted into 25 rows, where each measurement is done along the line. (see the code part to obtain an image of what i have)
(unfortunately, my reputation doesn't allow me to post images).
I then proceed to generate an other plot, which represents arrows of the current direction as:
The length of each arrow gives an indication of the current strength
Its orientation is represented (all of this is done by taking the two components of the current intensity (East-West / North-South) and represent the resulting current).
There is an arrow drawn for each tick of time (thus for the 1000 columns of my example data, there are always two components of the current intensity).
Those arrows are drawn at the beginning of each measurement cell, thus at each row of my data, allowing to have a representation of currents for the whole water column.
You can see the code part to have a "as i have" representation of currents
The purpose of this question is to understand how i can superimpose those two representations, drawing my current arrows at each row of the represented data, thus making a representation of both current direction, intensity and echo intensity.
Here i can't find any link to describe what i mean, but this is something i have already seen.
I tried with the panel function which seems to be the best option, but my knowledge of R and the handeling of this kind of work is small, and i hope one of you may have the time and the knowledges to help me to solve this problem way faster than i could.
I am, of course, available to answer any questions or give precisions. I may ask a lot more, after working on a large code for 6 months, my thirst for learning is now large.
Code to represent data :
Here are some data to represent what I have:
U (north/south component of velocity) and V (East/west):
U1= c(0.043,0.042,0.043,0.026,0.066,-0.017,-0.014,-0.019,0.024,-0.007,0.000,-0.048,-0.057,-0.101,-0.063,-0.114,-0.132,-0.103,-0.080,-0.098,-0.123,-0.087,-0.071,-0.050,-0.095,-0.047,-0.031,-0.028,-0.015,0.014,-0.019,0.048,0.026,0.039,0.084,0.036,0.071,0.055,0.019,0.059,0.038,0.040,0.013,0.044,0.078,0.040,0.098,0.015,-0.009,0.013,0.038,0.013,0.039,-0.008,0.024,-0.004,0.046,-0.004,-0.079,-0.032,-0.023,-0.015,-0.001,-0.028,-0.030,-0.054,-0.071,-0.046,-0.029,0.012,0.016,0.049,-0.020,0.012,0.016,-0.021,0.017,0.013,-0.008,0.057,0.028,0.056,0.114,0.073,0.078,0.133,0.056,0.057,0.096,0.061,0.096,0.081,0.100,0.092,0.057,0.028,0.055,0.025,0.082,0.087,0.070,-0.010,0.024,-0.025,0.018,0.016,0.007,0.020,-0.031,-0.045,-0.009,-0.060,-0.074,-0.072,-0.082,-0.100,-0.047,-0.089,-0.074,-0.070,-0.070,-0.070,-0.075,-0.070,-0.055,-0.078,-0.039,-0.050,-0.049,0.024,-0.026,-0.021,0.008,-0.026,-0.018,0.002,-0.009,-0.025,0.029,-0.040,-0.006,0.055,0.018,-0.035,-0.011,-0.026,-0.014,-0.006,-0.021,-0.031,-0.030,-0.056,-0.034,-0.026,-0.041,-0.107,-0.069,-0.082,-0.091,-0.096,-0.043,-0.038,-0.056,-0.068,-0.064,-0.042,-0.064,-0.058,0.016,-0.041,0.018,-0.008,0.058,0.006,0.007,0.060,0.011,0.050,-0.028,0.023,0.015,0.083,0.106,0.057,0.096,0.055,0.119,0.145,0.078,0.090,0.110,0.087,0.098,0.092,0.050,0.068,0.042,0.059,0.030,-0.005,-0.005,-0.013,-0.013,-0.016,0.008,-0.045,-0.021,-0.036,0.020,-0.018,-0.032,-0.038,0.021,-0.077,0.003,-0.010,-0.001,-0.024,-0.020,-0.022,-0.029,-0.053,-0.022,-0.007,-0.073,0.013,0.018,0.002,-0.038,0.024,0.025,0.033,0.008,0.016,-0.018,0.023,-0.001,-0.010,0.006,0.053,0.004,0.001,-0.003,0.009,0.019,0.024,0.031,0.024,0.009,-0.009,-0.035,-0.030,-0.031,-0.094,-0.006,-0.052,-0.061,-0.104,-0.098,-0.054,-0.161,-0.110,-0.078,-0.178,-0.052,-0.073,-0.051,-0.065,-0.029,-0.012,-0.053,-0.070,-0.040,-0.056,-0.004,-0.032,-0.065,-0.005,0.036,0.023,0.043,0.078,0.039,0.019,0.061,0.025,0.036,0.036,0.062,0.048,0.073,0.037,0.025,0.000,-0.007,-0.014,-0.050,-0.014,0.007,-0.035,-0.115,-0.039,-0.113,-0.102,-0.109,-0.158,-0.158,-0.133,-0.110,-0.170,-0.124,-0.115,-0.134,-0.097,-0.106,-0.155,-0.168,-0.038,-0.040,-0.074,-0.011,-0.040,-0.003,-0.019,-0.022,-0.006,-0.049,-0.048,-0.039,-0.011,-0.036,-0.001,-0.018,-0.037,-0.001,0.033,0.061,0.054,0.005,0.040,0.045,0.062,0.016,-0.007,-0.005,0.009,0.044,0.029,-0.016,-0.028,-0.021,-0.036,-0.072,-0.138,-0.060,-0.109,-0.064,-0.142,-0.081,-0.032,-0.077,-0.058,-0.035,-0.039,-0.013,0.007,0.007,-0.052,0.024,0.018,0.067,0.015,-0.002,-0.004,0.038,-0.010,0.056)
V1=c(-0.083,-0.089,-0.042,-0.071,-0.043,-0.026,0.025,0.059,-0.019,0.107,0.049,0.089,0.094,0.090,0.120,0.169,0.173,0.159,0.141,0.157,0.115,0.128,0.154,0.083,0.038,0.081,0.129,0.120,0.112,0.074,0.022,-0.022,-0.028,-0.048,-0.027,-0.056,-0.027,-0.107,-0.020,-0.063,-0.069,-0.019,-0.055,-0.071,-0.027,-0.034,-0.018,-0.089,-0.068,-0.129,-0.034,-0.002,0.011,-0.009,-0.038,-0.013,-0.006,0.027,0.037,0.022,0.087,0.080,0.119,0.085,0.076,0.072,0.029,0.103,0.019,0.020,0.052,0.024,-0.051,-0.024,-0.008,0.011,-0.019,0.023,-0.011,-0.033,-0.101,-0.157,-0.094,-0.099,-0.106,-0.103,-0.139,-0.093,-0.098,-0.083,-0.118,-0.142,-0.155,-0.095,-0.122,-0.072,-0.034,-0.047,-0.036,0.014,0.035,-0.034,-0.012,0.054,0.030,0.060,0.091,0.013,0.049,0.083,0.070,0.127,0.048,0.118,0.123,0.099,0.097,0.074,0.125,0.051,0.107,0.069,0.040,0.102,0.100,0.119,0.087,0.077,0.044,0.091,0.020,0.010,-0.028,0.026,-0.018,-0.020,0.010,0.034,0.005,0.010,0.028,-0.043,0.025,-0.069,-0.003,0.004,-0.001,0.024,0.032,0.076,0.033,0.071,0.000,0.052,0.034,0.058,0.002,0.070,0.025,0.056,0.051,0.080,0.051,0.101,0.009,0.052,0.079,0.035,0.051,0.049,0.064,0.004,0.011,0.005,0.031,-0.021,-0.024,-0.048,-0.011,-0.072,-0.034,-0.020,-0.052,-0.069,-0.088,-0.093,-0.084,-0.143,-0.103,-0.110,-0.124,-0.175,-0.083,-0.117,-0.090,-0.090,-0.040,-0.068,-0.082,-0.082,-0.061,-0.013,-0.029,-0.032,-0.046,-0.031,-0.048,-0.028,-0.034,-0.012,0.006,-0.062,-0.043,0.010,0.036,0.050,0.030,0.084,0.027,0.074,0.082,0.087,0.079,0.031,0.003,0.001,0.038,0.002,-0.038,0.003,0.023,-0.011,0.013,0.003,-0.046,-0.021,-0.050,-0.063,-0.068,-0.085,-0.051,-0.052,-0.065,0.014,-0.016,-0.082,-0.026,-0.032,0.019,-0.026,0.036,-0.005,0.092,0.070,0.045,0.074,0.091,0.122,-0.007,0.094,0.064,0.087,0.063,0.083,0.109,0.062,0.096,0.036,-0.019,0.075,0.052,0.025,0.031,0.078,0.044,-0.018,-0.040,-0.039,-0.140,-0.037,-0.095,-0.056,-0.044,-0.039,-0.086,-0.062,-0.085,-0.023,-0.103,-0.035,-0.067,-0.096,-0.097,-0.060,0.003,-0.051,0.014,-0.002,0.054,0.045,0.073,0.080,0.096,0.104,0.126,0.144,0.136,0.132,0.160,0.155,0.136,0.080,0.144,0.087,0.093,0.103,0.151,0.165,0.146,0.159,0.156,0.002,0.023,-0.019,0.078,0.031,0.038,0.019,0.094,0.018,0.028,0.064,-0.052,-0.034,0.000,-0.074,-0.076,-0.028,-0.048,-0.025,-0.095,-0.098,-0.045,-0.016,-0.030,-0.036,-0.012,0.023,0.038,0.042,0.039,0.073,0.066,0.027,0.016,0.093,0.129,0.138,0.121,0.077,0.046,0.067,0.068,0.023,0.062,0.038,-0.007,0.055,0.006,-0.015,0.008,0.064,0.012,0.004,-0.055,0.018,0.042)
U2=c(0.022,0.005,-0.022,0.025,-0.014,-0.020,-0.001,-0.021,-0.008,-0.006,-0.056,0.050,-0.068,0.018,-0.106,-0.053,-0.084,-0.082,-0.061,-0.041,-0.057,-0.123,-0.060,-0.029,-0.084,-0.004,0.030,-0.021,-0.036,-0.016,0.006,0.088,0.088,0.079,0.063,0.097,0.020,-0.048,0.046,0.057,0.065,0.042,0.022,0.016,0.041,0.109,0.024,-0.010,-0.084,-0.002,0.004,-0.033,-0.025,-0.020,-0.061,-0.060,-0.043,-0.027,-0.054,-0.054,-0.040,-0.077,-0.043,-0.014,0.030,-0.051,0.001,-0.029,0.008,-0.023,0.015,0.002,-0.001,0.029,0.048,0.081,-0.022,0.040,0.018,0.131,0.059,0.055,0.043,0.027,0.091,0.104,0.101,0.084,0.048,0.057,0.044,0.083,0.063,0.083,0.079,0.042,-0.021,0.017,0.005,0.001,-0.033,0.010,-0.028,-0.035,-0.012,-0.034,-0.055,-0.009,0.001,-0.084,-0.047,-0.020,-0.046,-0.042,-0.058,-0.071,0.013,-0.045,-0.070,0.000,-0.067,-0.090,0.012,-0.013,-0.013,-0.009,-0.063,-0.047,-0.030,0.046,0.026,0.019,0.007,-0.056,-0.062,0.009,-0.019,-0.005,0.003,0.022,-0.006,-0.019,0.020,0.025,0.040,-0.032,0.015,0.019,-0.014,-0.031,-0.047,0.010,-0.058,-0.079,-0.052,-0.044,0.012,-0.039,-0.007,-0.068,-0.095,-0.053,-0.066,-0.056,-0.033,-0.006,0.001,0.010,0.004,0.011,0.013,0.029,-0.011,0.007,0.023,0.087,0.054,0.040,0.013,-0.006,0.076,0.086,0.103,0.121,0.070,0.074,0.067,0.045,0.088,0.041,0.075,0.039,0.043,0.016,0.065,0.056,0.047,-0.002,-0.001,-0.009,-0.029,0.018,0.041,0.002,-0.022,0.003,0.008,0.031,0.003,-0.031,-0.015,0.014,-0.057,-0.043,-0.045,-0.067,-0.040,-0.013,-0.111,-0.067,-0.055,-0.004,-0.070,-0.019,0.009,0.009,0.032,-0.021,0.023,0.123,-0.032,0.040,0.012,0.042,0.038,0.037,-0.007,0.003,0.011,0.090,0.039,0.083,0.023,0.056,0.030,0.042,0.030,-0.046,-0.034,-0.021,-0.076,-0.017,-0.071,-0.053,-0.014,-0.060,-0.038,-0.076,-0.011,-0.005,-0.051,-0.043,-0.032,-0.014,-0.038,-0.081,-0.021,-0.035,0.014,-0.001,0.001,0.003,-0.029,-0.031,0.000,0.048,-0.036,0.034,0.054,0.001,0.046,0.006,0.039,0.015,0.012,0.034,0.022,0.015,0.033,0.037,0.012,0.057,0.001,-0.014,0.012,-0.007,-0.022,-0.002,-0.008,0.043,-0.041,-0.057,-0.006,-0.079,-0.070,-0.038,-0.040,-0.073,-0.045,-0.101,-0.092,-0.046,-0.047,-0.023,-0.028,-0.019,-0.086,-0.047,-0.038,-0.068,-0.017,0.037,-0.010,-0.016,0.010,-0.005,-0.031,0.004,-0.034,0.005,0.006,-0.015,0.017,-0.043,-0.007,-0.009,0.013,0.026,-0.036,0.011,0.047,-0.025,-0.023,0.043,-0.020,-0.003,-0.043,0.000,-0.018,-0.075,-0.045,-0.063,-0.043,-0.055,0.007,-0.063,-0.085,-0.031,0.005,-0.067,-0.059,-0.059,-0.029,-0.014,-0.040,-0.072,-0.018,0.039,-0.006,-0.001,-0.015,0.038,0.038,-0.009,0.026,0.017,0.056)
V2=c(-0.014,0.001,0.004,-0.002,0.022,0.019,0.023,-0.023,0.030,-0.085,-0.007,-0.027,0.100,0.058,0.108,0.055,0.132,0.115,0.084,0.046,0.102,0.121,0.036,0.019,0.066,0.049,-0.011,0.020,0.023,0.011,0.041,0.009,-0.009,-0.023,-0.036,0.031,0.012,0.026,-0.011,0.009,-0.027,-0.033,-0.054,-0.004,-0.040,-0.048,-0.009,0.023,-0.028,0.022,0.090,0.060,0.040,0.003,-0.011,0.030,0.107,0.025,0.084,0.036,0.074,0.065,0.078,0.011,0.058,0.092,0.083,0.080,0.039,0.000,-0.027,0.035,0.011,0.004,0.023,-0.033,-0.060,-0.049,-0.101,-0.033,-0.105,-0.042,-0.088,-0.086,-0.093,-0.085,-0.028,-0.046,-0.045,-0.052,-0.009,-0.066,-0.073,-0.067,0.011,-0.057,-0.087,-0.066,-0.103,-0.075,0.003,-0.021,0.010,-0.013,0.021,0.020,0.084,0.028,0.127,0.050,0.104,0.097,0.075,0.021,0.057,0.095,0.080,0.077,0.086,0.110,0.054,0.016,0.105,0.065,0.046,0.047,0.072,0.058,0.092,0.063,0.033,0.087,0.036,0.049,0.093,0.008,0.064,0.068,0.040,0.049,0.035,0.042,0.045,0.021,0.056,0.007,0.026,0.067,0.046,0.088,0.084,0.070,0.037,0.079,0.065,0.074,0.077,0.023,0.094,0.061,0.096,0.068,0.067,0.091,0.061,0.069,0.090,0.046,0.057,0.011,-0.018,0.005,0.001,-0.023,-0.087,0.010,0.023,-0.025,-0.040,-0.059,-0.063,-0.075,-0.136,-0.078,-0.102,-0.128,-0.116,-0.091,-0.136,-0.083,-0.115,-0.063,-0.055,-0.080,-0.093,-0.099,-0.053,-0.042,-0.011,-0.034,-0.027,-0.042,-0.022,-0.008,-0.033,-0.039,-0.036,0.019,0.036,-0.002,0.000,-0.021,0.060,0.030,0.073,0.080,0.061,0.046,0.062,0.010,0.034,0.103,0.107,0.016,0.080,0.067,0.007,0.060,0.021,-0.026,0.008,0.051,0.030,0.001,-0.036,-0.047,0.000,0.006,0.006,0.013,0.009,0.019,0.009,-0.086,-0.020,0.018,0.039,0.014,0.011,0.052,0.031,0.095,0.047,0.065,0.114,0.086,0.102,0.037,0.039,0.060,0.024,0.091,0.058,0.065,0.060,0.045,0.031,0.062,0.047,0.043,0.057,0.032,0.057,0.051,0.019,0.056,0.024,-0.003,0.023,-0.013,-0.032,-0.022,-0.064,-0.021,-0.050,-0.063,-0.090,-0.082,-0.076,-0.077,-0.042,-0.060,-0.010,-0.060,-0.069,-0.028,-0.071,-0.046,-0.020,-0.074,0.080,0.071,0.065,0.079,0.065,0.039,0.061,0.154,0.072,0.067,0.133,0.106,0.080,0.047,0.053,0.110,0.080,0.122,0.075,0.052,0.034,0.081,0.118,0.079,0.101,0.053,0.082,0.036,0.033,0.026,0.002,-0.002,0.020,0.087,0.021,0.034,0.003,-0.021,0.016,-0.009,-0.045,-0.043,-0.020,0.027,0.008,-0.006,0.043,0.045,0.014,0.053,0.083,0.113,0.091,0.028,0.060,0.040,0.019,0.114,0.126,0.090,0.046,0.089,0.029,0.030,0.010,0.045,0.040,0.072,-0.033,-0.008,0.014,-0.018,-0.004,-0.037,0.015,-0.021,-0.015)
bindistances=c(1.37,1.62,1.87,2.12,2.37,2.62,2.87,3.12,3.37,3.62,3.87,4.12,4.37,4.62,4.87,5.12,5.37,5.62,5.87,6.12,6.37,6.62,6.87,7.12,7.37,7.62,7.87,8.12)
Then, as a representation of currents:
AA=14
x11()
par(mfrow=c(4,1))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U1,
v=V1,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
axis(side=1)
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
plotSticks(x=seq(from=(1),
to=(377),
by=(1)),
u=U2,
v=V2,
yscale=ysc,xlab='',ylab='',xaxt='n',yaxt='n',col=(rep('black',384)))
In order to simplify the representation, the three last plots are based on the same data.

Resources