Aligning two set of points into a same reference point, centroid - r

I have two sets of 2d points (in x,y coordinates). How can I align these two set of points into a same reference point (centroid)?
Let my two sets are
A
x y
1 3
4 2
7 8
3 5
B
x y
9 5
14 7
17 3
30 25
By centroid I mean: it is the mean position of all points in all the co-ordinate direction.
Could any one please suggest me how to do it using R.
Thanks in advance.
Added later:
data1<-data.frame(x=c(1,4,7,3), y=c(3,2,8,5))
data2<-data.frame(x=c(9,14,17,30), y=c(5,7,3,25))
The centroids of the clusters are :
m1=c(mean(data1[,1]),mean(data1[,2]))
m2=c(mean(data2[,1]),mean(data2[,2]))
Now I want to align (coinside) m1 and m2 and get all the cluster points with respect to the common
aligned centroid. How to do this.
Thanks in advance.

Bit late to the party, but:
the technical term for aligning the origin is centering.
if your groups are in different variables, you can use scale:
data1<-data.frame(x=c(1,4,7,3), y=c(3,2,8,5))
data2<-data.frame(x=c(9,14,17,30), y=c(5,7,3,25))
scale (data1, center = TRUE, scale = FALSE)
scale (data2, center = TRUE, scale = FALSE)
if the groups are within the same data frame, ave can help (see also aggregate:
data1$group <- "A"
data2$group <- "B"
data <- rbind (data1, data2)
data$x <- data$x - ave (data$x, data$group)
data$y <- data$y - ave (data$y, data$group)

Typically you would use kmeans to do something like this. Normally you would attempt to determine the optimal number of clusters but in your case if you are assuming just a global mean and therefore one cluster then something like this:
#Two datasets
data1<-data.frame(x=c(1,4,7,3), y=c(3,2,8,5))
data2<-data.frame(x=c(9,14,17,30), y=c(5,7,3,25))
#combine datasets into one data frame
comb.data<-rbind(data1,data2)
#find the center of the data by assuming there is only one
fit<-kmeans(comb.data, centers=1)
#print out coordinates of center:
fit$centers
You can also plot it with the cluster package with the above code and this added:
library(cluster)
clusplot(comb.data, fit$cluster, color=T)
More info can be found here http://www.statmethods.net/advstats/cluster.html but there's a thousand references for clustering in R depending on if your interests are biology, chemometrics, etc.

Related

How to visualize a distance matrix on the map by the thickness or color of the line connect the adjacent localities in R?

Suppose I have two datasets: (1) a data frame: coordinates of localities, each with ID; and (2) a linguistic distance matrix which reflects the linguistic distance between these localities.
# My data are similar to this structure
# dataframe
id <- c("A","B","C","D","E")
x_coor <- c(0.5,1,1,1.5,2)
y_coor <- c(5.5,3,7,6.5,5)
my.data <- data.frame(id = id, x_coor = x_coor, y_coor = y_coor)
# linguistic distance matrix
A B C D
B 308.298557
C 592.555483 284.256926
D 141.421356 449.719913 733.976839
E 591.141269 282.842712 1.414214 732.562625
Now, I want to visualize the linguistic distance between every two sites onto a map by the thickness or color of the line connect the adjacent localities in R.
Just like this:
enter image description here
My idea is to generate the delaunay triangulation by deldir or tripack package in R.
# generate delaunay triangulation
library(deldir)
de=deldir(my.data$x_coor,my.data$y_coor)
plot.deldir(de,wlines="triang",col='blue',wpoints = "real",cex = 0.1)
text(my.data$x_coor,my.data$y_coor,my.data$id)
this is the plot:
enter image description here
My question is how to reflect the linguistic distance by the thickness or color of the edges of triangles? Is there any other better method?
Thank you very much!
What you want to do in respect of the line widths can be done "fairly
easily" by the deldir package. You simply call plot.deldir() with the
appropriate value of "lw" (line width).
At the bottom of this answer is a demonstration script "demo.txt" which shows how to do this in the case of your example. In particular this script shows
how to obtain the appropriate value of lw from the "linguistic distance
matrix". I had to make some adjustments in the way this matrix was
presented. I.e. I had to convert it into a proper matrix.
I have rescaled the distances to lie between 0 and 10 to obtain the
corresponding values of the line widths. You might wish to rescale in a different manner.
In respect of colours, there are two issues:
(1) It is not at all clear how you would like to map the "linguistic
distances" to colours.
(2) Unfortunately the code for plot.deldir() is written in a very
kludgy way, whence the "col" argument to segments() cannot be
appropriately passed on in the same manner that the "lw" argument can.
(I wrote the plot.deldir() code a long while ago, when I knew far less about
R programming than I know now! :-))
I will adjust this code and submit a new version of deldir to CRAN
fairly soon.
#
# Demo script
#
# Present the linguistic distances in a useable way.
vldm <- c(308.298557,592.555483,284.256926,141.421356,449.719913,
733.976839,591.141269,282.842712,1.414214,732.562625)
ldm <- matrix(nrow=5,ncol=5)
ldm[row(ldm) > col(ldm)] <- vldm
ldm[row(ldm) <= col(ldm)] <- 0
ldm <- (ldm + t(ldm))/2
rownames(ldm) <- LETTERS[1:5]
colnames(ldm) <- LETTERS[1:5]
# Set up the example data. It makes life much simpler if
# you denote the "x" and "y" coordinates by "x" and "y"!!!
id <- c("A","B","C","D","E")
x_coor <- c(0.5,1,1,1.5,2)
y_coor <- c(5.5,3,7,6.5,5)
# Eschew nomenclature like "my.data". Such nomenclature
# is Micro$oft-ese and is an abomination!!!
demoDat <- data.frame(id = id, x = x_coor, y = y_coor)
# Form the triangulation/tessellation.
library(deldir)
dxy <- deldir(demoDat)
# Plot the triangulation with line widths proportional
# to "linguistic distances". Note that plot.deldir() is
# a *method* for plot, so you do not have to (and shouldn't)
# type the ".deldir" in the plotting command.
plot(dxy,col=0) # This, and plotting with "add=TRUE" below, is
# a kludge to dodge around spurious warnings.
ind <- as.matrix(dxy$delsgs[,c("ind1","ind2")])
lwv <- ldm[ind]
lwv <- 10*lwv/max(lwv)
plot(dxy,wlines="triang",col='grey',wpoints="none",
lw=10*lwv/max(lwv),add=TRUE)
with(demoDat,text(x,y,id,col="red",cex=1.5))

how to get point set (x,y) in a desired area in r

The figure is the plot of x,y set in a excel file, total 8760 pair of x and y. I want to remove the noise data pair in red circle area and output a new excel file with remain data pair. How could I do it in R?
Using #G5W's example:
Make up data:
set.seed(2017)
x = runif(8760, 0,16)
y = c(abs(rnorm(8000, 0, 1)), runif(760,0,8))
XY = data.frame(x,y)
Fit a quantile regression to the 90th percentile:
library(quantreg)
library(splines)
qq <- rq(y~ns(x,20),tau=0.9,data=XY)
Compute and draw the predicted curve:
xvec <- seq(0,16,length.out=101)
pp <- predict(qq,newdata=data.frame(x=xvec))
plot(y~x,data=XY)
lines(xvec,pp,col=2,lwd=2)
Keep only points below the predicted line:
XY2 <- subset(XY,y<predict(qq,newdata=data.frame(x)))
plot(y~x,data=XY2)
lines(xvec,pp,col=2,lwd=2)
You can make the line less wiggly by lowering the number of knots, e.g. y~ns(x,10)
Both R and EXCEL read and write .csv files, so you can use those to transfer the data back and forth.
You do not provide any data so I made some junk data to produce a similar problem.
DATA
set.seed(2017)
x = runif(8760, 0,16)
y = c(abs(rnorm(8000, 0, 1)), runif(760,0,8))
XY = data.frame(x,y)
One way to identify noise points is by looking at the distance to the nearest neighbors. In dense areas, nearest neighbors will be closer. In non-dense areas, they will be further apart. The package dbscan provides a nice function to get the distance to the k nearest neighbors. For this problem, I used k=6, but you may need to tune for your data. Looking at the distribution of distances to the 6th nearest neighbor we see that most points have 6 neighbors within a distance of 0.2
XY6 = kNNdist(XY, 6)
plot(density(XY6[,6]))
So I will assume that point whose 6th nearest neighbor is further away are noise points. Just changing the color to see which points are affected, we get
TYPE = rep(1,8760)
TYPE[XY6[,6] > 0.2] = 2
plot(XY, col=TYPE)
Of course, if you wish to restrict to the non-noise points, you can use
NonNoise = XY[XY6[,6] > 0.2,]

Find correct 2D translation of a subset of coordinates

I have a problem I wish to solve in R with example data below. I know this must have been solved many times but I have not been able to find a solution that works for me in R.
The core of what I want to do is to find how to translate a set of 2D coordinates to best fit into an other, larger, set of 2D coordinates. Imagine for example having a Polaroid photo of a small piece of the starry sky with you out at night, and you want to hold it up in a position so they match the stars' current positions.
Here is how to generate data similar to my real problem:
# create reference points (the "starry sky")
set.seed(99)
ref_coords = data.frame(x = runif(50,0,100), y = runif(50,0,100))
# generate points take subset of coordinates to serve as points we
# are looking for ("the Polaroid")
my_coords_final = ref_coords[c(5,12,15,24,31,34,48,49),]
# add a little bit of variation as compared to reference points
# (data should very similar, but have a little bit of noise)
set.seed(100)
my_coords_final$x = my_coords_final$x+rnorm(8,0,.1)
set.seed(101)
my_coords_final$y = my_coords_final$y+rnorm(8,0,.1)
# create "start values" by, e.g., translating the points we are
# looking for to start at (0,0)
my_coords_start =apply(my_coords_final,2,function(x) x-min(x))
# Plot of example data, goal is to find the dotted vector that
# corresponds to the translation needed
plot(ref_coords, cex = 1.2) # "Starry sky"
points(my_coords_start,pch=20, col = "red") # start position of "Polaroid"
points(my_coords_final,pch=20, col = "blue") # corrected position of "Polaroid"
segments(my_coords_start[1,1],my_coords_start[1,2],
my_coords_final[1,1],my_coords_final[1,2],lty="dotted")
Plotting the data as above should yield:
The result I want is basically what the dotted line in the plot above represents, i.e. a delta in x and y that I could apply to the start coordinates to move them to their correct position in the reference grid.
Details about the real data
There should be close to no rotational or scaling difference between my points and the reference points.
My real data is around 1000 reference points and up to a few hundred points to search (could use less if more efficient)
I expect to have to search about 10 to 20 sets of reference points to find my match, as many of the reference sets will not contain my points.
Thank you for your time, I'd really appreciate any input!
EDIT: To clarify, the right plot represent the reference data. The left plot represents the points that I want to translate across the reference data in order to find a position where they best match the reference. That position, in this case, is represented by the blue dots in the previous figure.
Finally, any working strategy must not use the data in my_coords_final, but rather reproduce that set of coordinates starting from my_coords_start using ref_coords.
So, the previous approach I posted (see edit history) using optim() to minimize the sum of distances between points will only work in the limited circumstance where the point distribution used as reference data is in the middle of the point field. The solution that satisfies the question and seems to still be workable for a few thousand points, would be a brute-force delta and comparison algorithm that calculates the differences between each point in the field against a single point of the reference data and then determines how many of the rest of the reference data are within a minimum threshold (which is needed to account for the noise in the data):
## A brute-force approach where min_dist can be used to
## ameliorate some random noise:
min_dist <- 5
win_thresh <- 0
win_thresh_old <- 0
for(i in 1:nrow(ref_coords)) {
x2 <- my_coords_start[,1]
y2 <- my_coords_start[,2]
x1 <- ref_coords[,1] + (x2[1] - ref_coords[i,1])
y1 <- ref_coords[,2] + (y2[1] - ref_coords[i,2])
## Calculate all pairwise distances between reference and field data:
dists <- dist( cbind( c(x1, x2), c(y1, y2) ), "euclidean")
## Only take distances for the sampled data:
dists <- as.matrix(dists)[-1*1:length(x1),]
## Calculate the number of distances within the minimum
## distance threshold minus the diagonal portion:
win_thresh <- sum(rowSums(dists < min_dist) > 1)
## If we have more "matches" than our best then calculate a new
## dx and dy:
if (win_thresh > win_thresh_old) {
win_thresh_old <- win_thresh
dx <- (x2[1] - ref_coords[i,1])
dy <- (y2[1] - ref_coords[i,2])
}
}
## Plot estimated correction (your delta x and delta y) calculated
## from the brute force calculation of shifts:
points(
x=ref_coords[,1] + dx,
y=ref_coords[,2] + dy,
cex=1.5, col = "red"
)
I'm very interested to know if there's anyone that solves this in a more efficient manner for the number of points in the test data, possibly using a statistical or optimization algorithm.

create hexagonal cells grid using lat/lon coordinates

I would like to create a spatial grid with hexagonal cells using WGS84 coordinates (ie cells defined by 2 coordinates X=Latitude and Y=Longitude)
So, this is what I was thinkin about :
library(ggplot2);library(hexbin)
X<-seq(-10,20,by=0.1) # create coordinates vectors X and Y
Y<-seq(35,65,by=0.1)
z<-rnorm(301,0.5,1)
df<-as.data.frame(cbind(X,Y,z)) # create data frame with a z value for each cells (X,Y)
pl<-ggplot2(data=mat,aes(x=X,y=Y,z=z))+stat_summury_hex(fun=function(x) sum(x))
plot(pl)
But doing this does not provide what I wanted.
So, my question is : how to do a spatial grid with hexagonal cells using lat/lon coordinates ?
And second question : how to create a grid centered from one point (that would represent the centroid, and not the left bottom corner as usual?)
If I understand properly, you're looking for expand.grid():
xy <- expand.grid(X=X,Y=Y)
z<-rnorm(nrow(xy),0.5,1)
df<-as.data.frame(cbind(xy,z)) # create data frame with a z value for each cells (X,Y)
head(df)
pl<-ggplot(data=df,aes(x=X,y=Y,z=z))+stat_summary_hex(fun=function(x) sum(x))
plot(pl)
As for the second question, I'm not sure, but since all hexagons are the same size and will require the same operation to center, you can shift them uniformly by changing X and Y appropriately. Perhaps this can also be done via arguments also, not sure.
[[Edit July 23]]
second question was how to get a data.frame of hex coordinates. Took some digging, but here's an example:
library(hexbin)
coords <- hcell2xy( hexbin(x=X,y=Y))
head(coords)
x y
1 -10.0 35.00000
2 -9.5 35.86603
3 -8.5 35.86603
4 -9.0 36.73205
5 -8.0 36.73205
6 -7.5 37.59808
hcell2xy() is the key function called by ggplot2, and you may need to be explicit about specifying the argument xbins, which is determined automatically inside ggplot2, but appears to default to 30 in both cases.
[[Edit 3, to include z level]]
This is an answer to the comment asking for z levels as well. Ripped from ggplot2:::hexBin
hb <- hexbin(x=X,y=Y)
# Convert to data frame
data.frame(
hcell2xy(hb),
count = hb#count,
density = hb#count / sum(hb#count, na.rm=TRUE)
)
You can choose whether to use count or density for colors later, but warning: those are different from your z variable fed to ggplot2. If you'd like to summarize based on some other statistic, then I suggest you also look into the guts of those functions to see how things are passed around. That's what I've been doing.

spatial filtering by proximity in R

I have occurrence points for a species, and I'd like to remove potential sampling bias (where some regions might have much greater density of points than others). One way to do this would be to maximize a subset of points that are no less than a certain distance X of each other. Essentially, I would prevent points from being too close to each other.
Are there any existing R functions to do this? I've searched through various spatial packages, but haven't found anything, and can't figure out exactly how to implement this myself.
An example occurrence point dataset can be downloaded here.
Thanks!
I've written a new version of this function that no longer really follows rMaternII.
The input can either be a SpatialPoints, SpatialPointsDataFrame or matrix object.
Seems to work well, but suggestions welcome!
filterByProximity <- function(xy, dist, mapUnits = F) {
#xy can be either a SpatialPoints or SPDF object, or a matrix
#dist is in km if mapUnits=F, in mapUnits otherwise
if (!mapUnits) {
d <- spDists(xy,longlat=T)
}
if (mapUnits) {
d <- spDists(xy,longlat=F)
}
diag(d) <- NA
close <- (d <= dist)
diag(close) <- NA
closePts <- which(close,arr.ind=T)
discard <- matrix(nrow=2,ncol=2)
if (nrow(closePts) > 0) {
while (nrow(closePts) > 0) {
if ((!paste(closePts[1,1],closePts[1,2],sep='_') %in% paste(discard[,1],discard[,2],sep='_')) & (!paste(closePts[1,2],closePts[1,1],sep='_') %in% paste(discard[,1],discard[,2],sep='_'))) {
discard <- rbind(discard, closePts[1,])
closePts <- closePts[-union(which(closePts[,1] == closePts[1,1]), which(closePts[,2] == closePts[1,1])),]
}
}
discard <- discard[complete.cases(discard),]
return(xy[-discard[,1],])
}
if (nrow(closePts) == 0) {
return(xy)
}
}
Let's test it:
require(rgeos)
require(sp)
pts <- readWKT("MULTIPOINT ((3.5 2), (1 1), (2 2), (4.5 3), (4.5 4.5), (5 5), (1 5))")
pts2 <- filterByProximity(pts,dist=2, mapUnits=T)
plot(pts)
axis(1)
axis(2)
apply(as.data.frame(pts),1,function(x) plot(gBuffer(SpatialPoints(coords=matrix(c(x[1],x[2]),nrow=1)),width=2),add=T))
plot(pts2,add=T,col='blue',pch=20,cex=2)
There is also an R package called spThin that performs spatial thinning on point data. It was developed for reducing the effects of sampling bias for species distribution models, and does multiple iterations for optimization. The function is quite easy to implement---the vignette can be found here. There is also a paper in Ecography with details about the technique.
Following Josh O'Brien's advice, I looked at spatstat's rMaternI function, and came up with the following. It seems to work pretty well.
The distance is in map units. It would be nice to incorporate one of R's distance functions that always returns distances in meters, rather than input units, but I couldn't figure that out...
require(spatstat)
require(maptools)
occ <- readShapeSpatial('occurrence_example.shp')
filterByProximity <- function(occ, dist) {
pts <- as.ppp.SpatialPoints(occ)
d <- nndist(pts)
z <- which(d > dist)
return(occ[z,])
}
occ2 <- filterByProximity(occ,dist=0.2)
plot(occ)
plot(occ2,add=T,col='blue',pch=20)
Rather than removing data points, you might consider spatial declustering. This involves giving points in clusters a lower weight than outlying points. The two simplest ways to do this involve a polygonal segmentation, like a Voronoi diagram, or some arbitrary grid. Both methods will weight points in each region according to the area of the region.
For example, if we take the points in your test (1,1),(2,2),(4.5,4.5),(5,5),(1,5) and apply a regular 2-by-2 mesh, where each cell is three units on a side, then the five points fall into three cells. The points ((1,1),(2,2)) falling into the cell [0,3]X[0,3] would each have weights 1/( no. of points in current cell TIMES tot. no. of occupied cells ) = 1 / ( 2 * 3 ). The same thing goes for the points ((4.5,4.5),(5,5)) in the cell (3,6]X(3,6]. The "outlier", (1,5) would have a weight 1 / ( 1 * 3 ). The nice thing about this technique is that it is a quick way to generate a density based weighting scheme.
A polygonal segmentation involves drawing a polygon around each point and using the area of that polygon to calculate the weight. Generally, the polygons completely cover the entire region, and the weights are calculated as the inverse of the area of each polygon. A Voronoi diagram is usually used for this, but polygonal segmentations may be calculated using other techniques, or may be specified by hand.

Resources