What exactly does "closing over" mean? - functional-programming

In conjunction with closures I often read that something closes over something else as a means to explain closures.
Now I don't have much difficulty understanding closures, but "closing over" appears to be a more fundamental concept. Otherwise one would not refer to it to explain closures, would one?
What is the exact definition of closing over, and what is the something and the something else? Where does the term come from?

Consider:
something closes over something else
|_______| |_________| |____________|
| | |
subject verb object
Here:
The subject is the closure. A closure is a function.
The closure “closes over” (as in encloses) the set of its free variables.
The object is the set of the free variables of the closure.
Consider a simple function:
function add(x) {
return function closure(y) {
return x + y;
};
}
Here:
The function named add has only one variable, named x, which is not a free variable because it is defined within the scope of add itself.
The function named closure has two variables, named x and y, out of which x is a free variable because it is defined in the scope of add (not closure) and y is not a free variable because it is defined in the scope of closure itself.
Hence, in the second case the function named closure is said to “close over” the variable named x.
Therefore:
The function named closure is said to be a closure of the variable named x.
The variable named x is said to be an upvalue of the function named closure.
That's all there is to it.

Related

Parameters of function in Julia

Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?  This requires, if we want to use it anyway, to go through a very artificial process, by representing these data in the form of a ridiculous single element table.
Ada, which had the same kind of limitation, abandoned it in its 2012 redesign to the great satisfaction of its users. A small keyword (like out in Ada) could very well indicate that the possibility of keeping the modifications of a parameter at the output is required.
From my experience in Julia it is useful to understand the difference between a value and a binding.
Values
Each value in Julia has a concrete type and location in memory. Value can be mutable or immutable. In particular when you define your own composite type you can decide if objects of this type should be mutable (mutable struct) or immutable (struct).
Of course Julia has in-built types and some of them are mutable (e.g. arrays) and other are immutable (e.g. numbers, strings). Of course there are design trade-offs between them. From my perspective two major benefits of immutable values are:
if a compiler works with immutable values it can perform many optimizations to speed up code;
a user is can be sure that passing an immutable to a function will not change it and such encapsulation can simplify code analysis.
However, in particular, if you want to wrap an immutable value in a mutable wrapper a standard way to do it is to use Ref like this:
julia> x = Ref(1)
Base.RefValue{Int64}(1)
julia> x[]
1
julia> x[] = 10
10
julia> x
Base.RefValue{Int64}(10)
julia> x[]
10
You can pass such values to a function and modify them inside. Of course Ref introduces a different type so method implementation has to be a bit different.
Variables
A variable is a name bound to a value. In general, except for some special cases like:
rebinding a variable from module A in module B;
redefining some constants, e.g. trying to reassign a function name with a non-function value;
rebinding a variable that has a specified type of allowed values with a value that cannot be converted to this type;
you can rebind a variable to point to any value you wish. Rebinding is performed most of the time using = or some special constructs (like in for, let or catch statements).
Now - getting to the point - function is passed a value not a binding. You can modify a binding of a function parameter (in other words: you can rebind a value that a parameter is pointing to), but this parameter is a fresh variable whose scope lies inside a function.
If, for instance, we wanted a call like:
x = 10
f(x)
change a binding of variable x it is impossible because f does not even know of existence of x. It only gets passed its value. In particular - as I have noted above - adding such a functionality would break the rule that module A cannot rebind variables form module B, as f might be defined in a module different than where x is defined.
What to do
Actually it is easy enough to work without this feature from my experience:
What I typically do is simply return a value from a function that I assign to a variable. In Julia it is very easy because of tuple unpacking syntax like e.g. x,y,z = f(x,y,z), where f can be defined e.g. as f(x,y,z) = 2x,3y,4z;
You can use macros which get expanded before code execution and thus can have an effect modifying a binding of a variable, e.g. macro plusone(x) return esc(:($x = $x+1)) end and now writing y=100; #plusone(y) will change the binding of y;
Finally you can use Ref as discussed above (or any other mutable wrapper - as you have noted in your question).
"Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?" asked by Schemer
Your question is wrong because you assume the wrong things.
Parameters are variables
When you pass things to a function, often those things are values and not variables.
for example:
function double(x::Int64)
2 * x
end
Now what happens when you call it using
double(4)
What is the point of the function modifying it's parameter x , it's pointless. Furthermore the function has no idea how it is called.
Furthermore, Julia is built for speed.
A function that modifies its parameter will be hard to optimise because it causes side effects. A side effect is when a procedure/function changes objects/things outside of it's scope.
If a function does not modifies a variable that is part of its calling parameter then you can be safe knowing.
the variable will not have its value changed
the result of the function can be optimised to a constant
not calling the function will not break the program's behaviour
Those above three factors are what makes FUNCTIONAL language fast and NON FUNCTIONAL language slow.
Furthermore when you move into Parallel programming or Multi Threaded programming, you absolutely DO NOT WANT a variable having it's value changed without you (The programmer) knowing about it.
"How would you implement with your proposed macro, the function F(x) which returns a boolean value and modifies c by c:= c + 1. F can be used in the following piece of Ada code : c:= 0; While F(c) Loop ... End Loop;" asked by Schemer
I would write
function F(x)
boolean_result = perform_some_logic()
return (boolean_result,x+1)
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end
"Unfortunately no, because, and I should have said that, c has to take again the value 0 when F return the value False (c increases as long the Loop lives and return to 0 when it dies). " said Schemer
Then I would write
function F(x)
boolean_result = perform_some_logic()
if boolean_result == true
return (true,x+1)
else
return (false,0)
end
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end

Puzzling results for Julia typeof

I am puzzled by the following results of typeof in the Julia 1.0.0 REPL:
# This makes sense.
julia> typeof(10)
Int64
# This surprised me.
julia> typeof(function)
ERROR: syntax: unexpected ")"
# No answer at all for return example and no error either.
julia> typeof(return)
# In the next two examples the REPL returns the input code.
julia> typeof(in)
typeof(in)
julia> typeof(typeof)
typeof(typeof)
# The "for" word returns an error like the "function" word.
julia> typeof(for)
ERROR: syntax: unexpected ")"
The Julia 1.0.0 documentation says for typeof
"Get the concrete type of x."
The typeof(function) example is the one that really surprised me. I expected a function to be a first-class object in Julia and have a type. I guess I need to understand types in Julia.
Any suggestions?
Edit
Per some comment questions below, here is an example based on a small function:
julia> function test() return "test"; end
test (generic function with 1 method)
julia> test()
"test"
julia> typeof(test)
typeof(test)
Based on this example, I would have expected typeof(test) to return generic function, not typeof(test).
To be clear, I am not a hardcore user of the Julia internals. What follows is an answer designed to be (hopefully) an intuitive explanation of what functions are in Julia for the non-hardcore user. I do think this (very good) question could also benefit from a more technical answer provided by one of the more core developers of the language. Also, this answer is longer than I'd like, but I've used multiple examples to try and make things as intuitive as possible.
As has been pointed out in the comments, function itself is a reserved keyword, and is not an actual function istself per se, and so is orthogonal to the actual question. This answer is intended to address your edit to the question.
Since Julia v0.6+, Function is an abstract supertype, much in the same way that Number is an abstract supertype. All functions, e.g. mean, user-defined functions, and anonymous functions, are subtypes of Function, in the same way that Float64 and Int are subtypes of Number.
This structure is deliberate and has several advantages.
Firstly, for reasons I don't fully understand, structuring functions in this way was the key to allowing anonymous functions in Julia to run just as fast as in-built functions from Base. See here and here as starting points if you want to learn more about this.
Secondly, because each function is its own subtype, you can now dispatch on specific functions. For example:
f1(f::T, x) where {T<:typeof(mean)} = f(x)
and:
f1(f::T, x) where {T<:typeof(sum)} = f(x) + 1
are different dispatch methods for the function f1
So, given all this, why does, e.g. typeof(sum) return typeof(sum), especially given that typeof(Float64) returns DataType? The issue here is that, roughly speaking, from a syntactical perspective, sum needs to serves two purposes simultaneously. It needs to be both a value, like e.g. 1.0, albeit one that is used to call the sum function on some input. But, it is also needs to be a type name, like Float64.
Obviously, it can't do both at the same time. So sum on its own behaves like a value. You can write f = sum ; f(randn(5)) to see how it behaves like a value. But we also need some way of representing the type of sum that will work not just for sum, but for any user-defined function, and any anonymous function. The developers decided to go with the (arguably) simplest option and have the type of sum print literally as typeof(sum), hence the behaviour you observe. Similarly if I write f1(x) = x ; typeof(f1), that will also return typeof(f1).
Anonymous functions are a bit more tricky, since they are not named as such. What should we do for typeof(x -> x^2)? What actually happens is that when you build an anonymous function, it is stored as a temporary global variable in the module Main, and given a number that serves as its type for lookup purposes. So if you write f = (x -> x^2), you'll get something back like #3 (generic function with 1 method), and typeof(f) will return something like getfield(Main, Symbol("##3#4")), where you can see that Symbol("##3#4") is the temporary type of this anonymous function stored in Main. (a side effect of this is that if you write code that keeps arbitrarily generating the same anonymous function over and over you will eventually overflow memory, since they are all actually being stored as separate global variables of their own type - however, this does not prevent you from doing something like this for n = 1:largenumber ; findall(y -> y > 1.0, x) ; end inside a function, since in this case the anonymous function is only compiled once at compile-time).
Relating all of this back to the Function supertype, you'll note that typeof(sum) <: Function returns true, showing that the type of sum, aka typeof(sum) is indeed a subtype of Function. And note also that typeof(typeof(sum)) returns DataType, in much the same way that typeof(typeof(1.0)) returns DataType, which shows how sum actually behaves like a value.
Now, given everything I've said, all the examples in your question now make sense. typeof(function) and typeof(for) return errors as they should, since function and for are reserved syntax. typeof(typeof) and typeof(in) correctly return (respectively) typeof(typeof), and typeof(in), since typeof and in are both functions. Note of course that typeof(typeof(typeof)) returns DataType.

Why don't Julia closures copy arrays?

Just discovered a nasty bug in my program based on the fact that Julia does not copy arrays when defining a closure. This makes continuation programming hard. What was the motivation for this design choice?
Any suggestions for decoupling the state of my closure from the program state?
As an example
l = [2 1; 0 0];
f = x -> l[2,2];
Then f(1) = 0 but if you change l[2,2] = 1, then f(1) = 1.
Your assumption that this is a "closure" does not hold. l is not a "closed" variable in the context of the anonymous function at that point. It is simply a reference to a variable inherited from 'external' scope (since it has not been redefined locally inside the anonymous function).
Here's an example of a true closure:
f = let l=[2 1;0 0]
x -> l[2,2];
end
The variable l now is local to the let block, and not present at global scope. f still has access to it, even though it has technically gone out of scope. This is what a closure means.
As a result of l having gone out of scope, it is no longer accessible except through f which is a closure having access to it as a closed variable.
PS. I'm going to go out on a limb here and assume that what you're expecting was matlab-like behaviour. The big difference with matlab is that when you define an anonymous function handle there, it captures the current state of the workspace by copying all the variables and making them part of the function 'object'. You can confirm this by using the functions command. Matlab doesn't have references in the same way as julia. This is a strength of julia, not a weakness, as it allow the user to make use of optimizations that avoid reallocation of memory, that are harder to achieve in matlab*.
* though in fairness, matlab shines in other ways, by attempting to optimise this for you
EDIT: Liso pointed out a very important pitfall in the comments. Assume l already exists in the global workspace, and we type
let l=l
while this is perfectly valid syntax, making l a local variable to the let block, this is still initialised simply as a reference to the global l. Therefore any changes to the global l will still affect the closure, which is not what you want. In this case, you should be trying to 'mimic' matlab behaviour by making a copy (or a deep copy, depending on your use case), such that the local variable is truly independent of anything else once it goes out of scope and becomes 'closed' i.e.
let l = deepcopy(l)
Also, for completeness, when one makes a closure in julia, it is worth pointing out how this is implemented under the hood: your resulting f function is simply a callable object, containing a field for each 'closed' variable it needs to be aware of; you could even access this as f.l.

In OCaml, how do I re-assign a global variable inside a function

My program has the following global variable:
let a = (0.0,0.0);;
And the following, where eval e1 returns a string_of_float and somefunc e2 returns a tuple.
let rec output_expr = function
Binop(e1, op, e2) ->
let onDist = float_of_string(eval e1) and onDir = somefunc e2 in
let newA = onDir in (
fprintf oc "\n\t%s" ("blah");
fprintf oc "\n\t%s" ("blah");
fprintf oc "\n\t%s" ("blah");
let a = newA
)
Now, the code above gives me the following error:
Error: This expression has type bool
but an expression was expected of type unit
Command exited with code 2.
I want let a = newA to change the value of the global variable a. How can I do that?
To do it you need to make the value a reference,
let a = ref (0.0, 0.0)
then later that state can change by,
a := (1.0, 2.0);
In a functional world you would not want to have this global state. Sometimes it is very helpful, but in this particular case that is doubtful. You should pass the value a into your function and return a new value (a') that can be used subsequently; note that the value never changes, but new values take the place and are used in further computation.
In your particular case, I think you need to ask yourself why a function named output_expr modifies some global state, or returns anything but unit. But maybe this is a toy example for our consumption, so I will leave it at that.
You cannot assign to a variable (local or global is the same) in OCaml. There's simply no syntax in the language for it. In other words, variables in OCaml are what other languages call "constants" -- they get a value once in initialization, and that's it.
However, you can use a mutable data structure, which offers ways to modify its contents. Data structures are reference types, you can hold a reference to the data structure in a variable, and modify the contents, without needing to assign to the variable.
nlucaroni mentioned such a data structure, ref, which is a simple mutable cell holding a value of the desired type. There are other mutable data structures, like arrays, strings, and any record with mutable fields. Each has its own way of modifying the contents.
However, mutable state can mostly be avoided in functional programming, and if you are relying on mutable state, it may be an indication that you are not doing it the functional way.
In OCaml, values are immutable. You can't change the content of a value and should reorganize your code so that you don't need to.
Here your function output_expr should return the newA and this value should be used instead of a after that.
Actually you can have mutable variables using references but you should only use them if you know what you do and think they are better suited for a particular use case, never because you don't understand immutability.

What is this functional "pattern" called?

I was fooling around with some functional programming when I came across the need for this function, however I don't know what this sort of thing is called in standard nomenclature.
Anyone recognizes it?
function WhatAmIDoing(args...)
return function()
return args
end
end
Edit: generalized the function, it takes a variable amount of arguments ( or perhaps an implicit list) and returns a function that when invoked returns all the args, something like a curry or pickle, but it doesn't seem to be either.
WhatAmIDoing is a higher-order function because it is a function that returns another function.
The thing that it returns is a thunk — a closure created for delayed computation of the actual value. Usually thunks are created to lazily evaluate an expression (and possibly memoize it), but in other cases, a function is simply needed in place of a bare value, as in the case of "constantly 5", which in some languages returns a function that always returns 5.
The latter might apply in the example given, because assuming the language evaluates in applicative-order (i.e. evaluates arguments before calling a function), the function serves no other purpose than to turn the values into a function that returns them.
WhatAmIDoing is really an implementation of the "constantly" function I was describing. But in general, you don't have to return just args in the inner function. You could return "ackermann(args)", which could take a long time, as in...
function WhatAmIDoing2(args...)
return function()
return ackermann(args)
end
end
But WhatAmIDoing2 would return immediately because evaluation of the ackermann function would be suspended in a closure. (Yes, even in a call-by-value language.)
In functional programming a function that takes another function as an argument or returns another function is called a higher-order function.
I would say that XXXX returns a closure of the unnamed function bound on the values of x,y and z.
This wikipedia article may shed some light
Currying is about transforming a function to a chain of functions, each taking only one parameter and returning another such function. So, this example has no relation to currying.
Pickling is a term ususally used to denote some kind of serialization. Maybe for storing a object built from multiple values.
If the aspect interesting to you is that the returned function can access the arguments of the XXXX function, then I would go with Remo.D.
As others have said, it's a higher-order function. As you have "pattern" in your question, I thought I'd add that this feature of functional languages is often modelled using the strategy pattern in languages without higher-order functions.
Something very similar is called constantly in Clojure:
http://github.com/richhickey/clojure/blob/ab6fc90d56bfb3b969ed84058e1b3a4b30faa400/src/clj/clojure/core.clj#L1096
Only the function that constantly returns takes an arbitrary amount of arguments, making it more general (and flexible) than your pattern.
I don't know if this pattern has a name, but would use it in cases where normally functions are expected, but all I care for is that a certain value is returned:
(map (constantly 9) [1 2 3])
=> (9 9 9)
Just wondering, what do you use this for?
A delegate?
Basically you are returning a function?? or the output of a function?
Didn't understand, sorry...

Resources