Eliminate in an increasing order rows in a data frame - r

Eliminate in an increasing order rows in a data frame
x<-c(4,5,6,23,5,6,7,8,0,3)
y<-c(2,4,5,6,23,5,6,7,8,0)
z<-c(1,2,4,5,6,23,5,6,7,8)
df<-data.frame(x,y,z)
df
x y z
1 4 2 1
2 5 4 2
3 6 5 4
4 23 6 5
5 5 23 6
6 6 5 23
7 7 6 5
8 8 7 6
9 0 8 7
10 3 0 8
I would like to eliminate number 23 in the df from all columns by instructing to sequentially increasingly remove a row per column (not by matching the value 23, but by its initial x location).
df
x y z
1 4 2 1
2 5 4 2
3 6 5 4
4 5 6 5
5 6 5 6
6 7 6 5
7 8 7 6
8 0 8 7
9 3 0 8
Thank you

You can iterate through the columns and remove the element from each, then reassemble as a data frame:
result <- as.data.frame(lapply(1:ncol(df), function(x) df[-(x+3),x]))
names(result) <- names(df)
result
## x y z
## 1 4 2 1
## 2 5 4 2
## 3 6 5 4
## 4 5 6 5
## 5 6 5 6
## 6 7 6 5
## 7 8 7 6
## 8 0 8 7
## 9 3 0 8
df[-(x+3),x] is the column with the value removed, by location. To start with row N in column x you would use df[-(x+N-1),x].

You could also try:
n <- 4
df1 <- df[-n,]
df1[] <- unlist(df,use.names=FALSE)[-seq(n, prod(dim(df)), by=nrow(df)+1)]
df1
# x y z
#1 4 2 1
#2 5 4 2
#3 6 5 4
#5 5 6 5
#6 6 5 6
#7 7 6 5
#8 8 7 6
#9 0 8 7
#10 3 0 8

Related

Is there any way to replace a missing value based on another columns' value to match the column name

I have a dataset:
a day day.1.time day.2.time day.3.time day.4.time day.5.time
1 NA 2 4 5 7 10 4
2 NA 5 4 1 1 6 NA
3 NA 3 7 9 6 7 4
4 NA 3 6 8 8 4 5
5 NA 3 5 2 4 5 6
6 NA 3 87 3 2 1 78
7 NA 1 NA 7 5 9 54
8 NA 5 6 6 3 2 3
9 NA 2 5 10 9 8 3
10 NA 3 9 4 10 3 3
I am trying to use the day column value to match with the day.x.time column to replace the missing value in column a. For instance, in the first row, the first value in the day column is 2, then we should use day.2.time value 5 to replace the first value in column a.
If the day.x.time value is missing, we should use -1 day or +1 day to replace the missing in column a. For instance, in the second row, the day column shows 5, so we should use the value in day.5.time column, but it's also a missing value. In this case, we should use the value in day.4.time column to replace the missing value in column a.
You can use dat = data.frame(a = rep(NA,10), day = c(2,5,3,3,3,3,1,5,2,3), day.1.time = c(4,4,7,6,5,87,NA,6,5,9), day.2.time = sample(10), day.3.time = sample(10), day.4.time = sample(10), day.5.time = c(4,NA,4,5,6,78,54,3,3,3)) to generate the sample data.
I have tried grep(paste0("^day."dat$day,".time$", names(dat)) to match with the column but my code isn't matching in every row, so any help would be appreciated!
Here is one way to do this.
The first part is easy to match day column with the corresponding day.x.time column. We can do this using matrix subsetting.
cols <- grep('day\\.\\d+\\.time', names(dat))
dat$a <- dat[cols][cbind(1:nrow(dat), dat$day)]
dat
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
#1 3 2 4 3 3 3 4
#2 NA 5 4 4 10 2 NA
#3 1 3 7 8 1 8 4
#4 4 3 6 6 4 5 5
#5 6 3 5 10 6 7 6
#6 8 3 87 5 8 9 78
#7 NA 1 NA 1 7 10 54
#8 3 5 6 7 9 1 3
#9 2 2 5 2 5 6 3
#10 2 3 9 9 2 4 3
To fill values where day.x.time column is NA we can select the closest non-NA value in that row.
inds <- which(is.na(dat$a))
dat$a[inds] <- mapply(function(x, y)
na.omit(unlist(dat[x, cols[order(abs(y- seq_along(cols)))]])[1:4])[1],
inds, dat$day[inds])
dat
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
#1 3 2 4 3 3 3 4
#2 2 5 4 4 10 2 NA
#3 1 3 7 8 1 8 4
#4 4 3 6 6 4 5 5
#5 6 3 5 10 6 7 6
#6 8 3 87 5 8 9 78
#7 1 1 NA 1 7 10 54
#8 3 5 6 7 9 1 3
#9 2 2 5 2 5 6 3
#10 2 3 9 9 2 4 3
Using sapply to loop over the rows and subset by day[i] + 2 column.
res <- transform(dat, a=sapply(1:nrow(dat), function(i) dat[i, dat$day[i] + 2]))
res
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
# 1 5 2 4 5 7 10 4
# 2 NA 5 4 1 1 6 NA
# 3 6 3 7 9 6 7 4
# 4 8 3 6 8 8 4 5
# 5 4 3 5 2 4 5 6
# 6 2 3 87 3 2 1 78
# 7 NA 1 NA 7 5 9 54
# 8 3 5 6 6 3 2 3
# 9 10 2 5 10 9 8 3
# 10 10 3 9 4 10 3 3
Edit
The +/-2 days would require a decision rule, what to chose, if day is NA, but none of day - 1 and day + 1 is NA and both have the same values.
Here a solution that goes from day backwards and takes the first non-NA. If it is day one, as it's the case in row 7, we get NA.
res <- transform(dat, a=sapply(1:nrow(dat), function(i) {
days <- dat[i, -(1:2)]
day.value <- days[dat$day[i]]
if (is.na(day.value)) {
day.value <- tail(na.omit(unlist(days[1:dat$day[i]])), 1)
if (length(day.value) == 0) day.value <- NA
}
return(day.value)
}))
res
# a day day.1.time day.2.time day.3.time day.4.time day.5.time
# 1 10 2 4 10 1 2 4
# 2 10 5 4 1 3 10 NA
# 3 2 3 7 7 2 7 4
# 4 6 3 6 2 6 6 5
# 5 10 3 5 9 10 5 6
# 6 8 3 87 6 8 4 78
# 7 NA 1 NA 3 7 1 54
# 8 3 5 6 4 4 9 3
# 9 8 2 5 8 5 8 3
# 10 9 3 9 5 9 3 3

Create a new variable based on existing variable

My current dataset look like this
Order V1
1 7
2 5
3 8
4 5
5 8
6 3
7 4
8 2
1 8
2 6
3 3
4 4
5 5
6 7
7 3
8 6
I want to create a new variable called "V2" based on the variables "Order" and "V1". For every 8 items in the "Order" variable, I want to assign a value of "0" in "V2" if the varialbe "Order" has observation equals to 1; otherwise, "V2" takes the value of previous item in "V1".
This is the dataset that I want
Order V1 V2
1 7 0
2 5 7
3 8 5
4 5 8
5 8 5
6 3 8
7 4 3
8 2 4
1 8 0
2 6 8
3 3 6
4 4 3
5 5 4
6 7 5
7 3 7
8 6 3
Since my actual dataset is very large, I'm trying to use for loop with if statement to generate "V2". But my code keeps failing. I appreciate if anyone can help me on this, and I'm open to other statements. Thank you!
(Up front: I am assuming that the order of Order is perfectly controlled.)
You need simply ifelse and lag:
df <- read.table(text="Order V1
1 7
2 5
3 8
4 5
5 8
6 3
7 4
8 2
1 8
2 6
3 3
4 4
5 5
6 7
7 3
8 6 ", header=T)
df$V2 <- ifelse(df$Order==1, 0, lag(df$V1))
df
# Order V1 V2
# 1 1 7 0
# 2 2 5 7
# 3 3 8 5
# 4 4 5 8
# 5 5 8 5
# 6 6 3 8
# 7 7 4 3
# 8 8 2 4
# 9 1 8 0
# 10 2 6 8
# 11 3 3 6
# 12 4 4 3
# 13 5 5 4
# 14 6 7 5
# 15 7 3 7
# 16 8 6 3
with(dat,{V2<-c(0,head(V1,-1));V2[Order==1]<-0;dat$V2<-V2;dat})
Order V1 V2
1 1 7 0
2 2 5 7
3 3 8 5
4 4 5 8
5 5 8 5
6 6 3 8
7 7 4 3
8 8 2 4
9 1 8 0
10 2 6 8
11 3 3 6
12 4 4 3
13 5 5 4
14 6 7 5
15 7 3 7
16 8 6 3

How to replace the NA values after merge two data.frame? [duplicate]

This question already has answers here:
Replacing NAs with latest non-NA value
(21 answers)
Closed 7 years ago.
I have two data.frame as the following:
> a <- data.frame(x=c(1,2,3,4,5,6,7,8), y=c(1,3,5,7,9,11,13,15))
> a
x y
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6 6 11
7 7 13
8 8 15
> b <- data.frame(x=c(1,5,7), z=c(2, 4, 6))
> b
x z
1 1 2
2 5 4
3 7 6
Then I use "join" for two data.frames:
> c <- join(a, b, by="x", type="left")
> c
x y z
1 1 1 2
2 2 3 NA
3 3 5 NA
4 4 7 NA
5 5 9 4
6 6 11 NA
7 7 13 6
8 8 15 NA
My requirement is to replace the NAs in the Z column by the last None-Na value before the current place. I want the result like this:
> c
x y z
1 1 1 2
2 2 3 2
3 3 5 2
4 4 7 2
5 5 9 4
6 6 11 4
7 7 13 6
8 8 15 6
This time (if your data is not too large) a loop is an elegant option:
for(i in which(is.na(c$z))){
c$z[i] = c$z[i-1]
}
gives:
> c
x y z
1 1 1 2
2 2 3 2
3 3 5 2
4 4 7 2
5 5 9 4
6 6 11 4
7 7 13 6
8 8 15 6
data:
library(plyr)
a <- data.frame(x=c(1,2,3,4,5,6,7,8), y=c(1,3,5,7,9,11,13,15))
b <- data.frame(x=c(1,5,7), z=c(2, 4, 6))
c <- join(a, b, by="x", type="left")
You might also want to check na.locf in the zoo package.

Converting multiple histogram frequency count into an array in R

For each row in the matrix "result" shown below
A B C D E F G H I J
1 4 6 3 5 9 9 9 3 4 4
2 5 7 5 5 8 8 8 7 4 5
3 7 5 4 4 7 9 7 4 4 5
4 6 6 6 6 8 9 8 6 3 6
5 4 5 5 5 8 8 7 4 3 7
6 7 9 7 6 7 8 8 5 7 6
7 5 6 6 5 8 8 7 3 3 5
8 6 7 4 5 8 9 8 4 6 5
9 6 8 8 6 7 7 7 7 6 6
I would like to plot a histogram for each row with 3 bins as shown below:
samp<-result[1,]
hist(samp, breaks = 3, col="lightblue", border="pink")
Now what is needed is to convert the histogram frequency counts into an array as follows
If I have say 4 bins and say first bin has count=5 and second bin has a count=2 and fourth bin=3. Now I want a vector of all values in each of these bins, coming from data result(for every row) in a vector as my output.
row1 5 2 0 3
For hundreds of rows I would like to do it in an automated way and hence posted this question.
In the end the matrix should look like
bin 2-4 bin 4-6 bin6-8 bin8-10
row 1 5 2 0 3
row 2
row 3
row 4
row 5
row 6
row 7
row 8
row 9
DF <- read.table(text="A B C D E F G H I J
1 4 6 3 5 9 9 9 3 4 4
2 5 7 5 5 8 8 8 7 4 5
3 7 5 4 4 7 9 7 4 4 5
4 6 6 6 6 8 9 8 6 3 6
5 4 5 5 5 8 8 7 4 3 7
6 7 9 7 6 7 8 8 5 7 6
7 5 6 6 5 8 8 7 3 3 5
8 6 7 4 5 8 9 8 4 6 5
9 6 8 8 6 7 7 7 7 6 6", header=TRUE)
m <- as.matrix(DF)
apply(m,1,function(x) hist(x,breaks = 3)$count)
# $`1`
# [1] 5 2 0 3
#
# $`2`
# [1] 5 0 2 3
#
# $`3`
# [1] 6 3 1
#
# $`4`
# [1] 1 6 2 1
#
# $`5`
# [1] 3 3 4
#
# $`6`
# [1] 3 4 2 1
#
# $`7`
# [1] 2 5 3
#
# $`8`
# [1] 6 3 1
#
# $`9`
# [1] 4 4 0 2
Note that according to the documentation the number of breaks is only a suggestion. If you want to have the same number of breaks in all rows, you should do the binning outside of hist:
breaks <- 1:5*2
t(apply(m,1,function(x) table(cut(x,breaks,include.lowest = TRUE))))
# [2,4] (4,6] (6,8] (8,10]
# 1 5 2 0 3
# 2 1 4 5 0
# 3 4 2 3 1
# 4 1 6 2 1
# 5 3 3 4 0
# 6 0 3 6 1
# 7 2 5 3 0
# 8 2 4 3 1
# 9 0 4 6 0
You could access the counts vector which is returned by hist (see ?hist for details):
counts <- hist(samp, breaks = 3, col="lightblue", border="pink")$counts

R, Using reshape to pull pre post data

I have a simple data frame as follows
x = data.frame(id = seq(1,10),val = seq(1,10))
x
id val
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
I want to add 4 more columns. The first 2 are the previous two rows and the next two are the next two rows. For the first two rows and last two rows it needs to write out as NA.
How do I accomplish this using cast in the reshape package?
The final output would look like
1 1 NA NA 2 3
2 2 NA 1 3 4
3 3 1 2 4 5
4 4 2 3 5 6
... and so on...
Thanks much in advance
After your give the example , I change the solution
mat <- cbind(dat,
c(c(NA,NA),head(dat$id,-2)),
c(c(NA),head(dat$val,-1)),
c(tail(dat$id,-1),c(NA)),
c(tail(dat$val,-2),c(NA,NA)))
colnames(mat) <- c('id','val','idp','valp','idn','valn')
id val idp valp idn valn
1 1 1 NA NA 2 3
2 2 2 NA 1 3 4
3 3 3 1 2 4 5
4 4 4 2 3 5 6
5 5 5 3 4 6 7
6 6 6 4 5 7 8
7 7 7 5 6 8 9
8 8 8 6 7 9 10
9 9 9 7 8 10 NA
10 10 10 8 9 NA NA
Here is a soluting with sapply. First, choose the relative change for the new columns:
lags <- c(-2, -1, 1, 2)
Create the new columns:
newcols <- sapply(lags,
function(l) {
tmp <- seq.int(nrow(x)) + l;
x[replace(tmp, tmp < 1 | tmp > nrow(x), NA), "val"]})
Bind together:
cbind(x, newcols)
The result:
id val 1 2 3 4
1 1 1 NA NA 2 3
2 2 2 NA 1 3 4
3 3 3 1 2 4 5
4 4 4 2 3 5 6
5 5 5 3 4 6 7
6 6 6 4 5 7 8
7 7 7 5 6 8 9
8 8 8 6 7 9 10
9 9 9 7 8 10 NA
10 10 10 8 9 NA NA

Resources