kernel density bandwidth in R - r

I have two vectors: 1) ~1000 sample means and 2) the corresponding ~1000 standard deviations of those means. I would like to create a kernel density plot of these data, using the sample means as the observations from which density is estimated, and the standard deviations of each mean as the bandwidth for each observation. Problem is, density only allows a vector of length 1 to be used as a bandwidth. For example:
plot(density(means,bw=error))
returns the following warnings:
1: In if (!is.finite(bw)) stop("non-finite 'bw'") :
the condition has length > 1 and only the first element will be used
2: In if (bw <= 0) stop("'bw' is not positive.") :
the condition has length > 1 and only the first element will be used
3: In if (!is.finite(from)) stop("non-finite 'from'") :
the condition has length > 1 and only the first element will be used
4: In if (!is.finite(to)) stop("non-finite 'to'") :
the condition has length > 1 and only the first element will be used
...and I get a plot that uses the error of the first item in the list as the bandwidth for all of my observations.
Any ideas on how I could implement a separate, user-defined bandwidth for each observation used to produce a kernel density plot?

It doesn't look like density supports this sort of bandwidth specification. I suppose you could roll your own by
mydensity <- function(means, sds) {
x <- seq(min(means - 3*sds), max(means + 3*sds), length.out=512)
y <- sapply(x, function(v) mean(dnorm(v, means, sds)))
cbind(x, y)
}
This will be a good deal slower than the real function (which appears to use fft in the computation). Here it is at work, with small bandwidths at the left and large at the right:
set.seed(144)
means <- runif(1000)
sds <- ifelse(means < 0.5, 0.001, 0.05)
plot(mydensity(means, sds))

Related

How to generate a population of random numbers within a certain exponentially increasing range

I have 16068 datapoints with values that range between 150 and 54850 (mean = 3034.22). What would the R code be to generate a set of random numbers that grow in frequency exponentially between 54850 and 150?
I've tried using the rexp() function in R, but can't figure out how to set the range to between 150 and 54850. In my actual data population, the lambda value is 25.
set.seed(123)
myrange <- c(54850, 150)
rexp(16068, 1/25, myrange)
The call produces an error.
Error in rexp(16068, 1/25, myrange) : unused argument (myrange)
The hypothesized population should increase exponentially the closer the data values are to 150. I have 25 data points with a value of 150 and only one with a value of 54850. The simulated population should fall in this range.
This is really more of a question for math.stackexchange, but out of curiosity I provide this solution. Maybe it is sufficient for your needs.
First, ?rexp tells us that it has only two arguments, so we generate a random exponential distribution with the desired length.
set.seed(42) # for sake of reproducibility
n <- 16068
mr <- c(54850, 150) # your 'myrange' with less typing
y0 <- rexp(n, 1/25) # simulate exp. dist.
y <- y0[order(-y0)] # sort
Now we need a mathematical approach to rescale the distribution.
# f(x) = (b-a)(x - min(x))/(max(x)-min(x)) + a
y.scaled <- (mr[1] - mr[2]) * (y - min(y)) / (max(y) - min(y)) + mr[2]
Proof:
> range(y.scaled)
[1] 150.312 54850.312
That's not too bad.
Plot:
plot(y.scaled, type="l")
Note: There might be some mathematical issues, see therefore e.g. this answer.

R: draw from a vector using custom probability function

Forgive me if this has been asked before (I feel it must have, but could not find precisely what I am looking for).
Have can I draw one element of a vector of whole numbers (from 1 through, say, 10) using a probability function that specifies different chances of the elements. If I want equal propabilities I use runif() to get a number between 1 and 10:
ceiling(runif(1,1,10))
How do I similarly sample from e.g. the exponential distribution to get a number between 1 and 10 (such that 1 is much more likely than 10), or a logistic probability function (if I want a sigmoid increasing probability from 1 through 10).
The only "solution" I can come up with is first to draw e6 numbers from the say sigmoid distribution and then scale min and max to 1 and 10 - but this looks clumpsy.
UPDATE:
This awkward solution (and I dont feel it very "correct") would go like this
#Draw enough from a distribution, here exponential
x <- rexp(1e3)
#Scale probs to e.g. 1-10
scaler <- function(vector, min, max){
(((vector - min(vector)) * (max - min))/(max(vector) - min(vector))) + min
}
x_scale <- scaler(x,1,10)
#And sample once (and round it)
round(sample(x_scale,1))
Are there not better solutions around ?
I believe sample() is what you are looking for, as #HubertL mentioned in the comments. You can specify an increasing function (e.g. logit()) and pass the vector you want to sample from v as an input. You can then use the output of that function as a vector of probabilities p. See the code below.
logit <- function(x) {
return(exp(x)/(exp(x)+1))
}
v <- c(seq(1,10,1))
p <- logit(seq(1,10,1))
sample(v, 1, prob = p, replace = TRUE)

Draw random numbers from distribution within a certain range

I want to draw a number of random variables from a series of distributions. However, the values returned have to be no higher than a certain threshold.
Let’s say I want to use the gamma distribution and the threshold is 10 and I need n=100 random numbers. I now want 100 random number between 0 and 10. (Say scale and shape are 1.)
Getting 100 random variables is obviously easy...
rgamma(100, shape = 1, rate = 1)
But how can I accomplish that these values range from 0 to 100?
EDIT
To make my question clearer. The 100 values drawn should be scaled beween 0 and 10. So that the highest drawn value is 10 and the lowest 0. Sorry if this was not clear...
EDIT No2
To add some context to the random numbers I need: I want to draw "system repair times" that follow certain distributions. However, within the system simulation there is a binomial probability of repairs beeing "simple" (i.e. short repair time) and "complicated" (i.e. long repair time). I now need a function that provides "short repair times" and one that provides "long repair times". The threshold would be the differentiation between short and long repair times. Again, I hope this makes my question a little clearer.
This is not possible with a gamma distribution.
The support of a distribution determine the range of sample data drawn from it.
As the support of the gamma distribution is (0,inf) this is not possible.(see https://en.wikipedia.org/wiki/Gamma_distribution).
If you really want to have a gamma distribution take a rejection sampling approach as Alex Reynolds suggests.
Otherwise look for a distribution with a bounded/finite support (see https://en.wikipedia.org/wiki/List_of_probability_distributions)
e.g. uniform or binomial
Well, fill vector with rejection, untested code
v <- rep(-1.0, 100)
k <- 1
while (TRUE) {
q <- rgamma(1, shape=1, rate=1)
if (q > 0.0 && q < 100) {
v[k] <- q
k<-k+1
if (k>100)
break
}
}
I'm not sure you can keep the properties of the original distribution, imposing additional conditions... But something like this will do the job:
Filter(function(x) x < 10, rgamma(1000,1,1))[1:100]
For the scaling - beware, the outcome will not follow the original distribution (but there's no way to do it, as the other answers pointed out):
# rescale numeric vector into (0, 1) interval
# clip everything outside the range
rescale <- function(vec, lims=range(vec), clip=c(0, 1)) {
# find the coeficients of transforming linear equation
# that maps the lims range to (0, 1)
slope <- (1 - 0) / (lims[2] - lims[1])
intercept <- - slope * lims[1]
xformed <- slope * vec + intercept
# do the clipping
xformed[xformed < 0] <- clip[1]
xformed[xformed > 1] <- clip[2]
xformed
}
# this is the requested data
10 * rescale(rgamma(100,1,1))
Use truncdist package. It truncates any distribution between upper and lower bounds.
Hope that helped.

computing an intergral with multiple variables in R

Hi I have a equation like the following that I want to calculate.
The equation is given by :
In this equation x is an arrary from 0 to 500.
The value of t = 500 i.e upper limit of the integration.
Now I want to compute c as c(500,x).
The code that I have written so far is as follows:
x <- seq(from=0,by=0.5,length=1000)
t=500
integrand <- function(t)t^(-0.5)*exp((-x^2/t)-t)
integrated <- integrate(integrand, lower=0, upper=t)
final <- pi^(-0.5)*exp(2*x)*integrated
The error I get is as follows:
Error in integrate(integrand, lower = 0, upper = t) :
evaluation of function gave a result of wrong length
In addition: Warning messages:
1: In -x^2/t :
longer object length is not a multiple of shorter object length
2: In -x^2/t - t :
longer object length is not a multiple of shorter object length
3: In t^(-0.5) * exp(-x^2/t - t) :
longer object length is not a multiple of shorter object length
But it doesn't work because there is a variable x inside the integrand which is an arrary. Can anyone suggest how can I compute the integration first and then calculate the total expression for each value of x ? If I change the value of x in the integrand to constant I can compute integration but I want to compute for all the values of x from 0 to 500.
Thank you so much.
Well, here is some code, but it blows up after t=353:
Cfun <- function(XX, upper){
integrand <- function(x)x^(-0.5)*exp((-XX^2/x)-x)
integrated <- integrate(integrand, lower=0, upper=upper)$value
(final <- pi^(-0.5)*exp(2*XX)*integrated) }
sapply(1:400, Cfun, upper=500)
I'd put the loop over values for x outside the integration. Iterate over the x-values and perform the integration for each one inside. Then you'll have C(x) as a function of x suitable for plotting.
You realize, of course, that the indefinite integral can be evaluated:
http://www.wolframalpha.com/input/?i=integrate+exp%28-%28c%2Bt%5E2%29%2Ft%29%2Fsqrt%28t%29
Maybe that will help you see what the answer looks like before you get started.

Root mean square deviation on binned GAM results using R

Background
A PostgreSQL database uses PL/R to call R functions. An R call to calculate Spearman's correlation looks as follows:
cor( rank(x), rank(y) )
Also in R, a naïve calculation of a fitted generalized additive model (GAM):
data.frame( x, fitted( gam( y ~ s(x) ) ) )
Here x represents the years from 1900 to 2009 and y is the average measurement (e.g., minimum temperature) for that year.
Problem
The fitted trend line (using GAM) is reasonably accurate, as you can see in the following picture:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
Possible Solution
One way to improve the accuracy of the correlation is to use a root mean square error (RMSE) calculation on binned data.
Questions
Q.1. How would you implement the RMSE calculation on the binned data to get a correlation (between 0 and 1) of GAM's fit to the measurements, in the R language?
Q.2. Is there a better way to find the accuracy of GAM's fit to the data, and if so, what is it (e.g., root mean square deviation)?
Attempted Solution 1
Call the PL/R function using the observed amounts and the model (GAM) amounts: correlation_rmse := climate.plr_corr_rmse( v_amount, v_model );
Define plr_corr_rmse as follows (where o and m represent the observed and modelled data): CREATE OR REPLACE FUNCTION climate.plr_corr_rmse(
o double precision[], m double precision[])
RETURNS double precision AS
$BODY$
sqrt( mean( o - m ) ^ 2 )
$BODY$
LANGUAGE 'plr' VOLATILE STRICT
COST 100;
The o - m is wrong. I'd like to bin both data sets by calculating the mean of every 5 data points (there will be at most 110 data points). For example:
omean <- c( mean(o[1:5]), mean(o[6:10]), ... )
mmean <- c( mean(m[1:5]), mean(m[6:10]), ... )
Then correct the RMSE calculation as:
sqrt( mean( omean - mmean ) ^ 2 )
How do you calculate c( mean(o[1:5]), mean(o[6:10]), ... ) for an arbitrary length vector in an appropriate number of bins (5, for example, might not be ideal for only 67 measurements)?
I don't think hist is suitable here, is it?
Attempted Solution 2
The following code will solve the problem, however it drops data points from the end of the list (to make the list divisible by 5). The solution isn't ideal as the number "5" is rather magical.
while( length(o) %% 5 != 0 ) {
o <- o[-length(o)]
}
omean <- apply( matrix(o, 5), 2, mean )
What other options are available?
Thanks in advance.
You say that:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
You could calculate the correlation between the fitted values and the measured values:
cor(y,fitted(gam(y ~ s(x))))
I don't see why you want to bin your data, but you could do it as follows:
mean.binned <- function(y,n = 5){
apply(matrix(c(y,rep(NA,(n - (length(y) %% n)) %% n)),n),
2,
function(x)mean(x,na.rm = TRUE))
}
It looks a bit ugly, but it should handle vectors whose length is not a multiple of the binning length (i.e. 5 in your example).
You also say that:
One way to improve the accuracy of the
correlation is to use a root mean
square error (RMSE) calculation on
binned data.
I don't understand what you mean by this. The correlation is a factor in determining the mean squared error - for example, see equation 10 of Murphy (1988, Monthly Weather Review, v. 116, pp. 2417-2424). But please explain what you mean.

Resources