Background
A PostgreSQL database uses PL/R to call R functions. An R call to calculate Spearman's correlation looks as follows:
cor( rank(x), rank(y) )
Also in R, a naïve calculation of a fitted generalized additive model (GAM):
data.frame( x, fitted( gam( y ~ s(x) ) ) )
Here x represents the years from 1900 to 2009 and y is the average measurement (e.g., minimum temperature) for that year.
Problem
The fitted trend line (using GAM) is reasonably accurate, as you can see in the following picture:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
Possible Solution
One way to improve the accuracy of the correlation is to use a root mean square error (RMSE) calculation on binned data.
Questions
Q.1. How would you implement the RMSE calculation on the binned data to get a correlation (between 0 and 1) of GAM's fit to the measurements, in the R language?
Q.2. Is there a better way to find the accuracy of GAM's fit to the data, and if so, what is it (e.g., root mean square deviation)?
Attempted Solution 1
Call the PL/R function using the observed amounts and the model (GAM) amounts: correlation_rmse := climate.plr_corr_rmse( v_amount, v_model );
Define plr_corr_rmse as follows (where o and m represent the observed and modelled data): CREATE OR REPLACE FUNCTION climate.plr_corr_rmse(
o double precision[], m double precision[])
RETURNS double precision AS
$BODY$
sqrt( mean( o - m ) ^ 2 )
$BODY$
LANGUAGE 'plr' VOLATILE STRICT
COST 100;
The o - m is wrong. I'd like to bin both data sets by calculating the mean of every 5 data points (there will be at most 110 data points). For example:
omean <- c( mean(o[1:5]), mean(o[6:10]), ... )
mmean <- c( mean(m[1:5]), mean(m[6:10]), ... )
Then correct the RMSE calculation as:
sqrt( mean( omean - mmean ) ^ 2 )
How do you calculate c( mean(o[1:5]), mean(o[6:10]), ... ) for an arbitrary length vector in an appropriate number of bins (5, for example, might not be ideal for only 67 measurements)?
I don't think hist is suitable here, is it?
Attempted Solution 2
The following code will solve the problem, however it drops data points from the end of the list (to make the list divisible by 5). The solution isn't ideal as the number "5" is rather magical.
while( length(o) %% 5 != 0 ) {
o <- o[-length(o)]
}
omean <- apply( matrix(o, 5), 2, mean )
What other options are available?
Thanks in advance.
You say that:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
You could calculate the correlation between the fitted values and the measured values:
cor(y,fitted(gam(y ~ s(x))))
I don't see why you want to bin your data, but you could do it as follows:
mean.binned <- function(y,n = 5){
apply(matrix(c(y,rep(NA,(n - (length(y) %% n)) %% n)),n),
2,
function(x)mean(x,na.rm = TRUE))
}
It looks a bit ugly, but it should handle vectors whose length is not a multiple of the binning length (i.e. 5 in your example).
You also say that:
One way to improve the accuracy of the
correlation is to use a root mean
square error (RMSE) calculation on
binned data.
I don't understand what you mean by this. The correlation is a factor in determining the mean squared error - for example, see equation 10 of Murphy (1988, Monthly Weather Review, v. 116, pp. 2417-2424). But please explain what you mean.
Related
I have discrete count data indicating the number of successes in 10 binomial trials for a pilot sample of 46 cases. (Larger samples will follow once I have the analysis set up.) The zero class (no successes in 10 trials) is missing, i.e. each datum is an integer value between 1 and 10 inclusive. I want to fit a truncated binomial distribution with no zero class, in order to estimate the underlying probability p. I can do this adequately on an Excel spreadsheet using least squares with Solver, but because I want to calculate bootstrap confidence intervals on p, I am trying to implement it in R.
Frankly, I am struggling to understand how to code this. This is what I have so far:
d <- detections.data$x
# load required packages
library(fitdistrplus)
library(truncdist)
library(mc2d)
ptruncated.binom <- function(q, p) {
ptrunc(q, "binom", a = 1, b = Inf, p)
}
dtruncated.binom <- function(x, p) {
dtrunc(x, "binom", a = 1, b = Inf, p)
}
fit.tbin <- fitdist(d, "truncated.binom", method="mle", start=list(p=0.1))
I have had lots of error messages which I have solved by guesswork, but the latest one has me stumped and I suspect I am totally misunderstanding something.
Error in checkparamlist(arg_startfix$start.arg, arg_startfix$fix.arg, :
'start' must specify names which are arguments to 'distr'.<
I think this means I must specify starting values for x in dtrunc and q in ptrunc, but I am really unclear what they should be.
Any help would be very gratefully received.
I have 16068 datapoints with values that range between 150 and 54850 (mean = 3034.22). What would the R code be to generate a set of random numbers that grow in frequency exponentially between 54850 and 150?
I've tried using the rexp() function in R, but can't figure out how to set the range to between 150 and 54850. In my actual data population, the lambda value is 25.
set.seed(123)
myrange <- c(54850, 150)
rexp(16068, 1/25, myrange)
The call produces an error.
Error in rexp(16068, 1/25, myrange) : unused argument (myrange)
The hypothesized population should increase exponentially the closer the data values are to 150. I have 25 data points with a value of 150 and only one with a value of 54850. The simulated population should fall in this range.
This is really more of a question for math.stackexchange, but out of curiosity I provide this solution. Maybe it is sufficient for your needs.
First, ?rexp tells us that it has only two arguments, so we generate a random exponential distribution with the desired length.
set.seed(42) # for sake of reproducibility
n <- 16068
mr <- c(54850, 150) # your 'myrange' with less typing
y0 <- rexp(n, 1/25) # simulate exp. dist.
y <- y0[order(-y0)] # sort
Now we need a mathematical approach to rescale the distribution.
# f(x) = (b-a)(x - min(x))/(max(x)-min(x)) + a
y.scaled <- (mr[1] - mr[2]) * (y - min(y)) / (max(y) - min(y)) + mr[2]
Proof:
> range(y.scaled)
[1] 150.312 54850.312
That's not too bad.
Plot:
plot(y.scaled, type="l")
Note: There might be some mathematical issues, see therefore e.g. this answer.
Forgive me if this has been asked before (I feel it must have, but could not find precisely what I am looking for).
Have can I draw one element of a vector of whole numbers (from 1 through, say, 10) using a probability function that specifies different chances of the elements. If I want equal propabilities I use runif() to get a number between 1 and 10:
ceiling(runif(1,1,10))
How do I similarly sample from e.g. the exponential distribution to get a number between 1 and 10 (such that 1 is much more likely than 10), or a logistic probability function (if I want a sigmoid increasing probability from 1 through 10).
The only "solution" I can come up with is first to draw e6 numbers from the say sigmoid distribution and then scale min and max to 1 and 10 - but this looks clumpsy.
UPDATE:
This awkward solution (and I dont feel it very "correct") would go like this
#Draw enough from a distribution, here exponential
x <- rexp(1e3)
#Scale probs to e.g. 1-10
scaler <- function(vector, min, max){
(((vector - min(vector)) * (max - min))/(max(vector) - min(vector))) + min
}
x_scale <- scaler(x,1,10)
#And sample once (and round it)
round(sample(x_scale,1))
Are there not better solutions around ?
I believe sample() is what you are looking for, as #HubertL mentioned in the comments. You can specify an increasing function (e.g. logit()) and pass the vector you want to sample from v as an input. You can then use the output of that function as a vector of probabilities p. See the code below.
logit <- function(x) {
return(exp(x)/(exp(x)+1))
}
v <- c(seq(1,10,1))
p <- logit(seq(1,10,1))
sample(v, 1, prob = p, replace = TRUE)
I want to draw a number of random variables from a series of distributions. However, the values returned have to be no higher than a certain threshold.
Let’s say I want to use the gamma distribution and the threshold is 10 and I need n=100 random numbers. I now want 100 random number between 0 and 10. (Say scale and shape are 1.)
Getting 100 random variables is obviously easy...
rgamma(100, shape = 1, rate = 1)
But how can I accomplish that these values range from 0 to 100?
EDIT
To make my question clearer. The 100 values drawn should be scaled beween 0 and 10. So that the highest drawn value is 10 and the lowest 0. Sorry if this was not clear...
EDIT No2
To add some context to the random numbers I need: I want to draw "system repair times" that follow certain distributions. However, within the system simulation there is a binomial probability of repairs beeing "simple" (i.e. short repair time) and "complicated" (i.e. long repair time). I now need a function that provides "short repair times" and one that provides "long repair times". The threshold would be the differentiation between short and long repair times. Again, I hope this makes my question a little clearer.
This is not possible with a gamma distribution.
The support of a distribution determine the range of sample data drawn from it.
As the support of the gamma distribution is (0,inf) this is not possible.(see https://en.wikipedia.org/wiki/Gamma_distribution).
If you really want to have a gamma distribution take a rejection sampling approach as Alex Reynolds suggests.
Otherwise look for a distribution with a bounded/finite support (see https://en.wikipedia.org/wiki/List_of_probability_distributions)
e.g. uniform or binomial
Well, fill vector with rejection, untested code
v <- rep(-1.0, 100)
k <- 1
while (TRUE) {
q <- rgamma(1, shape=1, rate=1)
if (q > 0.0 && q < 100) {
v[k] <- q
k<-k+1
if (k>100)
break
}
}
I'm not sure you can keep the properties of the original distribution, imposing additional conditions... But something like this will do the job:
Filter(function(x) x < 10, rgamma(1000,1,1))[1:100]
For the scaling - beware, the outcome will not follow the original distribution (but there's no way to do it, as the other answers pointed out):
# rescale numeric vector into (0, 1) interval
# clip everything outside the range
rescale <- function(vec, lims=range(vec), clip=c(0, 1)) {
# find the coeficients of transforming linear equation
# that maps the lims range to (0, 1)
slope <- (1 - 0) / (lims[2] - lims[1])
intercept <- - slope * lims[1]
xformed <- slope * vec + intercept
# do the clipping
xformed[xformed < 0] <- clip[1]
xformed[xformed > 1] <- clip[2]
xformed
}
# this is the requested data
10 * rescale(rgamma(100,1,1))
Use truncdist package. It truncates any distribution between upper and lower bounds.
Hope that helped.
As an assignment I had to develop and algorithm and generate a samples for a given geometric distribution with PMF
Using the inverse transform method, I came up with the following expression for generating the values:
Where U represents a value, or n values depending on the size of the sample, drawn from a Unif(0,1) distribution and p is 0.3 as stated in the PMF above.
I have the algorithm, the implementation in R and I already generated QQ Plots to visually assess the adjustment of the empirical values to the theoretical ones (generated with R), i.e., if the generated sample follows indeed the geometric distribution.
Now I wanted to submit the generated sample to a goodness of fit test, namely the Chi-square, yet I'm having trouble doing this in R.
[I think this was moved a little hastily, in spite of your response to whuber's question, since I think before solving the 'how do I write this algorithm in R' problem, it's probably more important to deal with the 'what you're doing is not the best approach to your problem' issue (which certainly belongs where you posted it). Since it's here, I will deal with the 'doing it in R' aspect, but I would urge to you go back an ask about the second question (as a new post).]
Firstly the chi-square test is a little different depending on whether you test
H0: the data come from a geometric distribution with parameter p
or
H0: the data come from a geometric distribution with parameter 0.3
If you want the second, it's quite straightforward. First, with the geometric, if you want to use the chi-square approximation to the distribution of the test statistic, you will need to group adjacent cells in the tail. The 'usual' rule - much too conservative - suggests that you need an expected count in every bin of at least 5.
I'll assume you have a nice large sample size. In that case, you'll have many bins with substantial expected counts and you don't need to worry so much about keeping it so high, but you will still need to choose how you will bin the tail (whether you just choose a single cut-off above which all values are grouped, for example).
I'll proceed as if n were say 1000 (though if you're testing your geometric random number generation, that's pretty low).
First, compute your expected counts:
dgeom(0:20,.3)*1000
[1] 300.0000000 210.0000000 147.0000000 102.9000000 72.0300000 50.4210000
[7] 35.2947000 24.7062900 17.2944030 12.1060821 8.4742575 5.9319802
[13] 4.1523862 2.9066703 2.0346692 1.4242685 0.9969879 0.6978915
[19] 0.4885241 0.3419669 0.2393768
Warning, dgeom and friends goes from x=0, not x=1; while you can shift the inputs and outputs to the R functions, it's much easier if you subtract 1 from all your geometric values and test that. I will proceed as if your sample has had 1 subtracted so that it goes from 0.
I'll cut that off at the 15th term (x=14), and group 15+ into its own group (a single group in this case). If you wanted to follow the 'greater than five' rule of thumb, you'd cut it off after the 12th term (x=11). In some cases (such as smaller p), you might want to split the tail across several bins rather than one.
> expec <- dgeom(0:14,.3)*1000
> expec <- c(expec, 1000-sum(expec))
> expec
[1] 300.000000 210.000000 147.000000 102.900000 72.030000 50.421000
[7] 35.294700 24.706290 17.294403 12.106082 8.474257 5.931980
[13] 4.152386 2.906670 2.034669 4.747562
The last cell is the "15+" category. We also need the probabilities.
Now we don't yet have a sample; I'll just generate one:
y <- rgeom(1000,0.3)
but now we want a table of observed counts:
(x <- table(factor(y,levels=0:14),exclude=NULL))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 <NA>
292 203 150 96 79 59 47 25 16 10 6 7 0 2 5 3
Now you could compute the chi-square directly and then calculate the p-value:
> (chisqstat <- sum((x-expec)^2/expec))
[1] 17.76835
(pval <- pchisq(chisqstat,15,lower.tail=FALSE))
[1] 0.2750401
but you can also get R to do it:
> chisq.test(x,p=expec/1000)
Chi-squared test for given probabilities
data: x
X-squared = 17.7683, df = 15, p-value = 0.275
Warning message:
In chisq.test(x, p = expec/1000) :
Chi-squared approximation may be incorrect
Now the case for unspecified p is similar, but (to my knowledge) you can no longer get chisq.test to do it directly, you have to do it the first way, but you have to estimate the parameter from the data (by maximum likelihood or minimum chi-square), and then test as above but you have one fewer degree of freedom for estimating the parameter.
See the example of doing a chi-square for a Poisson with estimated parameter here; the geometric follows the much same approach as above, with the adjustments as at the link (dealing with the unknown parameter, including the loss of 1 degree of freedom).
Let us assume you've got your randomly-generated variates in a vector x. You can do the following:
x <- rgeom(1000,0.2)
x_tbl <- table(x)
x_val <- as.numeric(names(x_tbl))
x_df <- data.frame(count=as.numeric(x_tbl), value=x_val)
# Expand to fill in "gaps" in the values caused by 0 counts
all_x_val <- data.frame(value = 0:max(x_val))
x_df <- merge(all_x_val, x_df, by="value", all.x=TRUE)
x_df$count[is.na(x_df$count)] <- 0
# Get theoretical probabilities
x_df$eprob <- dgeom(x_df$val, 0.2)
# Chi-square test: once with asymptotic dist'n,
# once with bootstrap evaluation of chi-sq test statistic
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE)
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE,
simulate.p.value=TRUE, B=10000)
There's a "goodfit" function described as "Goodness-of-fit Tests for Discrete Data" in package "vcd".
G.fit <- goodfit(x, type = "nbinomial", par = list(size = 1))
I was going to use the code you had posted in an earlier question, but it now appears that you have deleted that code. I find that offensive. Are you using this forum to gather homework answers and then defacing it to remove the evidence? (Deleted questions can still be seen by those of us with sufficient rep, and the interface prevents deletion of question with upvoted answers so you should not be able to delete this one.)
Generate a QQ Plot for testing a geometrically distributed sample
--- question---
I have a sample of n elements generated in R with
sim.geometric <- function(nvals)
{
p <- 0.3
u <- runif(nvals)
ceiling(log(u)/log(1-p))
}
for which i want to test its distribution, specifically if it indeed follows a geometric distribution. I want to generate a QQ PLot but have no idea how to.
--------reposted answer----------
A QQ-plot should be a straight line when compared to a "true" sample drawn from a geometric distribution with the same probability parameter. One gives two vectors to the functions which essentially compares their inverse ECDF's at each quantile. (Your attempt is not particularly successful:)
sim.res <- sim.geometric(100)
sim.rgeom <- rgeom(100, 0.3)
qqplot(sim.res, sim.rgeom)
Here I follow the lead of the authors of qqplot's help page (which results in flipping that upper curve around the line of identity):
png("QQ.png")
qqplot(qgeom(ppoints(100),prob=0.3), sim.res,
main = expression("Q-Q plot for" ~~ {G}[n == 100]))
dev.off()
---image not included---
You can add a "line of good fit" by plotting a line through through the 25th and 75th percentile points for each distribution. (I added a jittering feature to this to get a better idea where the "probability mass" was located:)
sim.res <- sim.geometric(500)
qqplot(jitter(qgeom(ppoints(500),prob=0.3)), jitter(sim.res),
main = expression("Q-Q plot for" ~~ {G}[n == 100]), ylim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )),
xlim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )))
qqline(sim.res, distribution = function(p) qgeom(p, 0.3),
prob = c(0.25, 0.75), col = "red")