We would like to use either hierarchical or k means clustering, to cluster the genes in our dataset based on their function. We got the GO id for each gene and now we would like to cluster them in groups based on the function preferably hierarchical. That means from the bottom (where each function is unique) to upper levels (where we have more generalized/groups of functions). We are programming in R.
Thanks in advance for your help!
Usuall one either performs a differential expression analysis between two conditions, or clusters genes based on expression across conditions or time points. After that, it is possible to look for overrepresentation of GO terms in differentially expressed gene sets or in clusters.
You may be interested in GeneMania (http://www.genemania.org/) - you can enter a list of genes that will be presented in a network (with lots of options for customisation and expansioN). This tool will again provide you with GO terms that are enriched in the network. A second tool of interest is Gorilla (http://cbl-gorilla.cs.technion.ac.il/) - this will show the GO hierarchy itself with GO terms lighting up if they are enriched.
k-means isn't a good idea for this kind of data.
Instead, look at algorithms specialized for this data, in particular biclustering algorithms.
Related
I could use some advice on methods in R to determine the optimal number of clusters and later on describe the clusters with different statistical criteria. I’m new to R with basic knowledge about the statistical foundations of cluster analysis.
Methods to determine the number of clusters: In the literature one common method to do so is the so called "Elbow-criterion" which compares the Sum of Squared Differences (SSD) for different cluster solutions. Therefore the SSD is plotted against the numbers of Cluster in the analysis and an optimal number of clusters is determined by identifying the “elbow” in the plot (e.g. here: https://en.wikipedia.org/wiki/File:DataClustering_ElbowCriterion.JPG)
This method is a first approach to get a subjective impression. Therefore I’d like to implement it in R. The information on the internet on this is sparse. There is one good example here: http://www.mattpeeples.net/kmeans.html where the author also did an interesting iterative approach to see if the elbow is somehow stable after several repetitions of the clustering process (nevertheless it is for partitioning cluster methods not for hierarchical).
Other methods in Literature comprise the so called “stopping rules”. MILLIGAN & COOPER compared 30 of these stopping rules in their paper “An examination of procedures for determining the number of clusters in a data set” (available here: http://link.springer.com/article/10.1007%2FBF02294245) finding that the Stopping Rule from Calinski and Harabasz provided the best results in a Monte Carlo evaluation. Information on implementing this in R is even sparser.
So if anyone has ever implemented this or another Stopping rule (or other method) some advice would be very helpful.
Statistically describe the clusters:For describing the clusters I thought of using the mean and some sort of Variance Criterion. My data is on agricultural land-use and shows the production numbers of different crops per Municipality. My aim is to find similar patterns of land-use in my dataset.
I produced a script for a subset of objects to do a first test-run. It looks like this (explanations on the steps within the script, sources below).
#Clusteranalysis agriculture
#Load data
agriculture <-read.table ("C:\\Users\\etc...", header=T,sep=";")
attach(agriculture)
#Define Dataframe to work with
df<-data.frame(agriculture)
#Define a Subset of objects to first test the script
a<-df[1,]
b<-df[2,]
c<-df[3,]
d<-df[4,]
e<-df[5,]
f<-df[6,]
g<-df[7,]
h<-df[8,]
i<-df[9,]
j<-df[10,]
k<-df[11,]
#Bind the objects
aTOk<-rbind(a,b,c,d,e,f,g,h,i,j,k)
#Calculate euclidian distances including only the columns 4 to 24
dist.euklid<-dist(aTOk[,4:24],method="euclidean",diag=TRUE,upper=FALSE, p=2)
print(dist.euklid)
#Cluster with Ward
cluster.ward<-hclust(dist.euklid,method="ward")
#Plot the dendogramm. define Labels with labels=df$Geocode didn't work
plot(cluster.ward, hang = -0.01, cex = 0.7)
#here are missing methods to determine the optimal number of clusters
#Calculate different solutions with different number of clusters
n.cluster<-sapply(2:5, function(n.cluster)table(cutree(cluster.ward,n.cluster)))
n.cluster
#Show the objects within clusters for the three cluster solution
three.cluster<-cutree(cluster.ward,3)
sapply(unique(three.cluster), function(g)aTOk$Geocode[three.cluster==g])
#Calculate some statistics to describe the clusters
three.cluster.median<-aggregate(aTOk[,4:24],list(three.cluster),median)
three.cluster.median
three.cluster.min<-aggregate(aTOk[,4:24],list(three.cluster),min)
three.cluster.min
three.cluster.max<-aggregate(aTOk[,4:24],list(three.cluster),max)
three.cluster.max
#Summary statistics for one variable
three.cluster.summary<-aggregate(aTOk[,4],list(three.cluster),summary)
three.cluster.summary
detach(agriculture)
Sources:
http://www.r-tutor.com/gpu-computing/clustering/distance-matrix
How to apply a hierarchical or k-means cluster analysis using R?
http://statistics.berkeley.edu/classes/s133/Cluster2a.html
The elbow criterion as your links indicated is for k-means. Also the cluster mean is obviously related to k-means, and is not appropriate for linkage clustering (in particular not for single-linkage, see single-link-effect).
Your question title however mentions hierarchical clustering, and so does your code?
Note that the elbow criterion does not choose the optimal number of clusters. It chooses the optimal number of k-means clusters. If you use a different clustering method, it may need a different number of clusters.
There is no such thing as the objectively best clustering. Thus, there also is no objectively best number of clusters. There is a rule of thumb for k-means that chooses a (maybe best) tradeoff between number of clusters and minimizing the target function (because increasing the number of clusters always can improve the target function); but that is mostly to counter a deficit of k-means. It is by no means objective.
Cluster analysis in itself is not an objective task. A clustering may be mathematically good, but useless. A clustering may score much worse mathematically, but it may provide you insight to your data that cannot be measured mathematically.
This is a very late answer and probably not useful for the asker anymore - but maybe for others. Check out the package NbClust. It contains 26 indices that give you a recommended number of clusters (and you can also choose your type of clustering). You can run it in such a way that you get the results for all the indices and then you can basically go with the number of clusters recommended by most indices. And yes, I think the basic statistics are the best way to describe clusters.
You can also try the R-NN Curves method.
http://rguha.net/writing/pres/rnn.pdf
K means Clustering is highly sensitive to the scale of data e.g. for a person's age and salary, if not normalized, K means would consider salary more important variable for clustering rather than age, which you do not want. So before applying the Clustering Algorithm, it is always a good practice to normalize the scale of data, bring them to the same level and then apply the CA.
I have time-series data of 12 consumers. The data corresponding to 12 consumers (named as a ... l) is
I want to cluster these consumers so that I may know which of the consumers have utmost similar consumption behavior. Accordingly, I found clustering method pamk, which automatically calculates the number of clusters in input data.
I assume that I have only two options to calculate the distance between any two time-series, i.e., Euclidean, and DTW. I tried both of them and I do get different clusters. Now the question is which one should I rely upon? and why?
When I use Eulidean distance I got following clusters:
and using DTW distance I got
Conclusion:
How will you decide which clustering approach is the best in this case?
Note: I have asked the same question on Cross-Validated also.
none of the timeseries above look similar to me. Do you see any pattern? Maybe there is no pattern?
the clustering visualizations indicate that there are no clusters, too. b and l appear to be the most unusual outliers; followed by d,e,h; but there are no clusters there.
Also try hierarchical clustering. The dendrogram may be more understandable.
But in either way, there may be no clusters. You need to be prepared for this outcome, and consider it a valid hypothesis. Double-check any result. As you have seen, pam will always return a result, and you have absolutely no means to decide which result is more "correct" than the other (most likely, neither is correct, and you should rely on neither, to answer your question).
I am attempting to cluster the behavioral traits of 250 species into life-history strategies. The trait data consists of both numerical and nominal variables. I am relatively new to R and to cluster analysis, but I believe the best option to find the distances for these points is to use the gower similarity method within the daisy function. 1) Is that the best method?
Once I have these distances, I would like to find significant clusters. I have looked into pvclust and like its ability to give me the strength of the cluster. However, I have not been able to modify the code to accept the distance measurements previously made using daisy. I have unsuccessfully tried to follow the advice given here https://stats.stackexchange.com/questions/10347/making-a-heatmap-with-a-precomputed-distance-matrix-and-data-matrix-in-r/10349#10349 and using the code obtained here http://www.is.titech.ac.jp/~shimo/prog/pvclust/pvclust_unofficial_090824/pvclust.R
2)Can anyone help me to modify the existing code to accept my distance measurements?
3) Or, is there another better way to determine the number of significant clusters?
I thank all in advance for your help.
Some comments...
About 1)
It is a good way to deal with different types of data.
You could also create as many new rows in the dataset as possible nominal values and put 1/0 where it is needed. For example if there are 3 nominal values such as "reptile", "mammal" and "bird" you could change your initial dataset that has 2 columns (numeric, Nominal)
for a new one with 4 columns (numeric, numeric( representing reptile), numeric(representing mammal), numeric(representing bird)) an instance (23.4,"mammal") would be mapped to (23.4,0,1,0).
Using this mapping you could work with "normal" distances (be sure to standardize the data so that no column dominates the others due to it's big/small values).
About 2)
daisy returns an element of type dissimilarity, you can use it in other clustering algorithms from the cluster package (maybe you don't have to implement more stuff). For example the function pam can get the object returned by daisy directly.
About 3)
Clusters are really subjective and most cluster algorithms depend on the initial conditions so "significant clusters" is not really a term that some people would not be comfortable using. Pam could be useful in your case because clusters are centered using medoids which is good for nominal data (because it is interpretable). K-means for example has the disadvantage that the centroids are not interpretable (what does it mean 1/2 reptile 1/2 mammal?) pam builds the clusters centered to instances which is nice for interpretation purposes.
About pam:
http://en.wikipedia.org/wiki/K-medoids
http://stat.ethz.ch/R-manual/R-devel/library/cluster/html/pam.html
You can use Zahn algorithm to find the cluster. Basically it's a minimum spanning tree and a function to remove the longest edge.
I could use some advice on methods in R to determine the optimal number of clusters and later on describe the clusters with different statistical criteria. I’m new to R with basic knowledge about the statistical foundations of cluster analysis.
Methods to determine the number of clusters: In the literature one common method to do so is the so called "Elbow-criterion" which compares the Sum of Squared Differences (SSD) for different cluster solutions. Therefore the SSD is plotted against the numbers of Cluster in the analysis and an optimal number of clusters is determined by identifying the “elbow” in the plot (e.g. here: https://en.wikipedia.org/wiki/File:DataClustering_ElbowCriterion.JPG)
This method is a first approach to get a subjective impression. Therefore I’d like to implement it in R. The information on the internet on this is sparse. There is one good example here: http://www.mattpeeples.net/kmeans.html where the author also did an interesting iterative approach to see if the elbow is somehow stable after several repetitions of the clustering process (nevertheless it is for partitioning cluster methods not for hierarchical).
Other methods in Literature comprise the so called “stopping rules”. MILLIGAN & COOPER compared 30 of these stopping rules in their paper “An examination of procedures for determining the number of clusters in a data set” (available here: http://link.springer.com/article/10.1007%2FBF02294245) finding that the Stopping Rule from Calinski and Harabasz provided the best results in a Monte Carlo evaluation. Information on implementing this in R is even sparser.
So if anyone has ever implemented this or another Stopping rule (or other method) some advice would be very helpful.
Statistically describe the clusters:For describing the clusters I thought of using the mean and some sort of Variance Criterion. My data is on agricultural land-use and shows the production numbers of different crops per Municipality. My aim is to find similar patterns of land-use in my dataset.
I produced a script for a subset of objects to do a first test-run. It looks like this (explanations on the steps within the script, sources below).
#Clusteranalysis agriculture
#Load data
agriculture <-read.table ("C:\\Users\\etc...", header=T,sep=";")
attach(agriculture)
#Define Dataframe to work with
df<-data.frame(agriculture)
#Define a Subset of objects to first test the script
a<-df[1,]
b<-df[2,]
c<-df[3,]
d<-df[4,]
e<-df[5,]
f<-df[6,]
g<-df[7,]
h<-df[8,]
i<-df[9,]
j<-df[10,]
k<-df[11,]
#Bind the objects
aTOk<-rbind(a,b,c,d,e,f,g,h,i,j,k)
#Calculate euclidian distances including only the columns 4 to 24
dist.euklid<-dist(aTOk[,4:24],method="euclidean",diag=TRUE,upper=FALSE, p=2)
print(dist.euklid)
#Cluster with Ward
cluster.ward<-hclust(dist.euklid,method="ward")
#Plot the dendogramm. define Labels with labels=df$Geocode didn't work
plot(cluster.ward, hang = -0.01, cex = 0.7)
#here are missing methods to determine the optimal number of clusters
#Calculate different solutions with different number of clusters
n.cluster<-sapply(2:5, function(n.cluster)table(cutree(cluster.ward,n.cluster)))
n.cluster
#Show the objects within clusters for the three cluster solution
three.cluster<-cutree(cluster.ward,3)
sapply(unique(three.cluster), function(g)aTOk$Geocode[three.cluster==g])
#Calculate some statistics to describe the clusters
three.cluster.median<-aggregate(aTOk[,4:24],list(three.cluster),median)
three.cluster.median
three.cluster.min<-aggregate(aTOk[,4:24],list(three.cluster),min)
three.cluster.min
three.cluster.max<-aggregate(aTOk[,4:24],list(three.cluster),max)
three.cluster.max
#Summary statistics for one variable
three.cluster.summary<-aggregate(aTOk[,4],list(three.cluster),summary)
three.cluster.summary
detach(agriculture)
Sources:
http://www.r-tutor.com/gpu-computing/clustering/distance-matrix
How to apply a hierarchical or k-means cluster analysis using R?
http://statistics.berkeley.edu/classes/s133/Cluster2a.html
The elbow criterion as your links indicated is for k-means. Also the cluster mean is obviously related to k-means, and is not appropriate for linkage clustering (in particular not for single-linkage, see single-link-effect).
Your question title however mentions hierarchical clustering, and so does your code?
Note that the elbow criterion does not choose the optimal number of clusters. It chooses the optimal number of k-means clusters. If you use a different clustering method, it may need a different number of clusters.
There is no such thing as the objectively best clustering. Thus, there also is no objectively best number of clusters. There is a rule of thumb for k-means that chooses a (maybe best) tradeoff between number of clusters and minimizing the target function (because increasing the number of clusters always can improve the target function); but that is mostly to counter a deficit of k-means. It is by no means objective.
Cluster analysis in itself is not an objective task. A clustering may be mathematically good, but useless. A clustering may score much worse mathematically, but it may provide you insight to your data that cannot be measured mathematically.
This is a very late answer and probably not useful for the asker anymore - but maybe for others. Check out the package NbClust. It contains 26 indices that give you a recommended number of clusters (and you can also choose your type of clustering). You can run it in such a way that you get the results for all the indices and then you can basically go with the number of clusters recommended by most indices. And yes, I think the basic statistics are the best way to describe clusters.
You can also try the R-NN Curves method.
http://rguha.net/writing/pres/rnn.pdf
K means Clustering is highly sensitive to the scale of data e.g. for a person's age and salary, if not normalized, K means would consider salary more important variable for clustering rather than age, which you do not want. So before applying the Clustering Algorithm, it is always a good practice to normalize the scale of data, bring them to the same level and then apply the CA.
I'm playing arround with a Genetic Algorithm in which I want to evolve graphs.
Do you know a way to apply crossover and mutation when the chromosomes are graphs?
Or am I missing a coding for the graphs that let me apply "regular" crossover and mutation over bit strings?
thanks a lot!
Any help, even if it is not directly related to my problem, is appreciated!
Manuel
I like Sandor's suggestion of using Ken Stanley's NEAT algorithm.
NEAT was designed to evolve neural networks with arbitrary topologies, but those are just basically directed graphs. There were many ways to evolve neural networks before NEAT, but one of NEAT's most important contributions was that it provided a way to perform meaningful crossover between two networks that have different toplogies.
To accomplish this, NEAT uses historical markings attached to each gene to "line up" the genes of two genomes during crossover (a process biologists call synapsis). For example:
(source: natekohl.net)
(In this example, each gene is a box and represents a connection between two nodes. The number at the top of each gene is the historical marking for that gene.)
In summary: Lining up genes based on historical markings is a principled way to perform crossover between two networks without expensive topological analysis.
You might as well try Genetic Programming. A graph would be the closest thing to a tree and GP uses trees... if you still want to use GAs instead of GPs then take a look at how crossover is performed on a GP and that might give you an idea how to perform it on the graphs of your GA:
(source: geneticprogramming.com)
Here is how crossover for trees (and graphs) works:
You select 2 specimens for mating.
You pick a random node from one parent and swap it with a random node in the other parent.
The resulting trees are the offspring.
As others have mentioned, one common way to cross graphs (or trees) in a GA is to swap subgraphs (subtrees). For mutation, just randomly change some of the nodes (w/ small probability).
Alternatively, if you are representing a graph as an adjacency matrix, then you might swap/mutate elements in the matrices (kind of like using a two-dimensional bit string).
I'm not sure if using a bitstring is the best idea, I'd rather represent at least the weights with real values. Nevertheless bitstrings may also work.
If you have a fixed topology, then both crossover and mutation are quite easy (assuming you only evolve the weights of the network):
Crossover: take some weights from one parent, the rest from the other, can be very easily done if you represent the weights as an array or list. For more details or alternatives see http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29.
Mutation: simply select some of the weights and adjust them slightly.
Evolving some other stuff (e.g. activation function) is pretty similar to these.
If you also want to evolve the topology then things become much more interesting. There are quite some additional mutation possibilities, like adding a node (most likely connected to two already existing nodes), splitting a connection (instead of A->B have A->C->B), adding a connection, or the opposites of these.
But crossover will not be too easy (at least if the number of nodes is not fixed), because you will probably want to find "matching" nodes (where matching can be anything, but likely be related to a similar "role", or a similar place in the network). If you also want to do it I'd highly recommend studying already existing techniques. One that I know and like is called NEAT. You can find some info about it at
http://en.wikipedia.org/wiki/Neuroevolution_of_augmenting_topologies
http://nn.cs.utexas.edu/?neat
and http://www.cs.ucf.edu/~kstanley/neat.html
Well, I have never played with such an implementation, but eventually for crossover you could pick a branch of one of the graphs and swap it with a branch from another graph.
For mutation you could randomly change a node inside the graph, with small probability.