R - Bootstrap by several column criteria - r

So what I have is data of cod weights at different ages. This data is taken at several locations over time.
What I would like to create is "weight at age", basically a mean value of weights at a certain age. I want do this for each location at each year.
However, the ages are not sampled the same way (all old fish caught are measured, while younger fish are sub sampled), so I can't just create a normal average, I would like to bootstrap samples.
The bootstrap should take out 5 random values of weight at an age, create a mean value and repeat this a 1000 times, and then create an average of the means. The values should be able to be used again (replace). This should be done for each age at every AreaCode for every year. Dependent factors: Year-location-Age.
So here's an example of what my data could look like.
df <- data.frame( Year= rep(c(2000:2008),2), AreaCode = c("39G4", "38G5","40G5"), Age = c(0:8), IndWgt = c(rnorm(18, mean=5, sd=3)))
> df
Year AreaCode Age IndWgt
1 2000 39G4 0 7.317489899
2 2001 38G5 1 7.846606144
3 2002 40G5 2 0.009212455
4 2003 39G4 3 6.498688035
5 2004 38G5 4 3.121134937
6 2005 40G5 5 11.283096043
7 2006 39G4 6 0.258404136
8 2007 38G5 7 6.689780137
9 2008 40G5 8 10.180511929
10 2000 39G4 0 5.972879108
11 2001 38G5 1 1.872273650
12 2002 40G5 2 5.552962065
13 2003 39G4 3 4.897882549
14 2004 38G5 4 5.649438631
15 2005 40G5 5 4.525012587
16 2006 39G4 6 2.985615831
17 2007 38G5 7 8.042884181
18 2008 40G5 8 5.847629941
AreaCode contains the different locations, in reality I have 85 different levels. The time series stretches 1991-2013, the ages 0-15. IndWgt contain the weight. My whole data frame has a row length of 185726.
Also, every age does not exist for every location and every year. Don't know if this would be a problem, just so the scripts isn't based on references to certain row number. There are some NA values in the weight column, but I could just remove them before hand.
I was thinking that I maybe should use replicate, and apply or another plyr function. I've tried to understand the boot function but I don't really know if I would write my arguments under statistics, and in that case how. So yeah, basically I have no idea.
I would be thankful for any help I can get!

How about this with plyr. I think from the question you wanted to bootstrap only the "young" fish weights and use actual means for the older ones. If not, just replace the ifelse() statement with its last argument.
require(plyr)
#cod<-read.csv("cod.csv",header=T) #I loaded your data from csv
bootstrap<-function(Age,IndWgt){
ifelse(Age>2, # treat differently for old/young fish
res<-mean(IndWgt), # old fish mean
res<-mean(replicate(1000,sample(IndWgt,5,replace = TRUE))) # young fish bootstrap
)
return(res)
}
ddply(cod,.(Year,AreaCode,Age),summarize,boot_mean=bootstrap(Age,IndWgt))
Year AreaCode Age boot_mean
1 2000 39G4 0 6.650294
2 2001 38G5 1 4.863024
3 2002 40G5 2 2.724541
4 2003 39G4 3 5.698285
5 2004 38G5 4 4.385287
6 2005 40G5 5 7.904054
7 2006 39G4 6 1.622010
8 2007 38G5 7 7.366332
9 2008 40G5 8 8.014071
PS: If you want to sample all ages in the same way, no need for the function, just:
ddply(cod,.(Year,AreaCode,Age),
summarize,
boot_mean=mean(replicate(1000,mean(sample(IndWgt,5,replace = TRUE)))))

Since you don't provide enough code, it's too hard (lazy) for me to test it properly. You should get your first step using the following code. If you wrap this into replicate, you should get your end result that you can average.
part.result <- aggregate(IndWgt ~ Year + AreaCode + Age, data = data, FUN = function(x) {
rws <- length(x)
get.em <- sample(x, size = 5, replace = TRUE)
out <- mean(get.em)
out
})
To handle any missing combination of year/age/location, you could probably add an if statement checking for NULL/NA and producing a warning and/or skipping the iteration.

Related

Selecting later date observation in panel data in R

I have the following panel data in R:
ID_column<- c("A","A","A","A","B","B","B","B")
Date_column<-c(20040131, 20041231,20051231,20061231, 20051231, 20061231, 20071231, 20081231)
Price_column<-c(12,13,17,19,35,38,39,41)
Data<- data.frame(ID_column, Date_column, Price_column)
#The data looks like this:
ID_column Date_column Price_column
1: A 20040131 12
2: A 20041231 13
3: A 20051231 17
4: A 20061231 19
5: B 20051231 35
6: B 20061231 38
7: B 20071231 39
8: B 20081231 41
My next aim would be to convert the Date column which is currently in a numeric YYYYMMDD format into YYYY by simply taking the first four digits of each entry in the data column as follows:
Data$Date_column<- substr(Data$Date_column,1,4)
#The data then looks like:
ID_column Date_column Price_column
1 A 2004 12
2 A 2004 13
3 A 2005 17
4 A 2006 19
5 B 2005 35
6 B 2006 38
7 B 2007 39
8 B 2008 41
My ultimate goal would be to employ the plm package for panel data regression, but when applying the package and using pdata.frame to set the ID and Time variables as indices, I get error messages of duplicate ID/Time pairs (In this case rows 1 and 2 which would both be given the tag: A,2004). To solve this issue, I would like to delete row 1 in the original data, and only keep the newer observation from the year 2004. This would the provide me with unique ID/Time pairs across the whole data.
Therefore I was hoping for someone to help me out with a loop or a package suggestion with which I can only keep the row with the newer/later observation within a year, if this occurs, also for application to larger data sets.. I believe this involves a couple commands of conditional formatting which I am having difficulties putting together currently. I believe a loop that evaluates whether the first four digits of consecutive date observations are identical and then deletes the one with the "smaller" date/takes the "larger" date would do it, but my experience with loops is very limited.
Kind regards and thank you!
I'd recommend to keep the Date_column as a reference to pick the later observation and mutate a new column for only the year,since you want the latest observation each year.
Data$year<- substr(Data$Date_column,1,4)
> Data$Date_column<- lubridate::ymd(Data$Date_column)
>
> Data %>% arrange(desc(Date_column)) %>%
+ distinct(ID_column,year,.keep_all = TRUE) %>%
+ arrange(Date_column)
ID_column Date_column Price_column year
1 A 2004-12-31 13 2004
2 A 2005-12-31 17 2005
3 B 2005-12-31 35 2005
4 A 2006-12-31 19 2006
5 B 2006-12-31 38 2006
6 B 2007-12-31 39 2007
since we arranged in the actual date in descending order, you guarantee that dropped rows for the unique combination of ID and year is the oldest. you can change the arrangement for the opposite; to get the oldest occuerence

SQL `lead()` equivalent in R

I want to make something like LEAD(mes) OVER(PARTITION BY CODIGO_CLIENTE ORDER BY mes) mes_2 in R, but I dont know a similar function.
I have no clue how to work it out.
Since you shared no data and desired output, here is an example with lead() from the dplyr package. The example is from the Help page of lead(). This can give you a good idea of what you can do with this function.
df <- data.frame(year = 2000:2005, value = (0:5) ^ 2)
scrambled <- df[sample(nrow(df)), ]
year value
1 2000 0
5 2004 16
3 2002 4
4 2003 9
2 2001 1
6 2005 25
right <- mutate(scrambled, `next` = lead(value, order_by = year))
arrange(right, year)
year value next
1 2000 0 1
2 2001 1 4
3 2002 4 9
4 2003 9 16
5 2004 16 25
6 2005 25 NA
Since you're new to R I suggest you read a bit on the dplyr package. Also, to make it easier for the people trying to help you, please provide more details next time!

Adding data points in a column by factors in R

The data.frame my_data consists of two columns("PM2.5" & "years") & around 6400000 rows. The data.frame has various data points for pollutant levels of "PM2.5" for years 1999, 2002, 2005 & 2008.
This is what i have done to the data.drame:
{
my_data <- arrange(my_data,year)
my_data$year <- as.factor(my_data$year)
my_data$PM2.5 <- as.numeric(my_data$PM2.5)
}
I want to find the sum of all PM2.5 levels (i.e sum of all data points under PM2.5) according to different year. How can I do it.
!The image shows the first 20 rows of the data.frame.
Since the column "years" is arranged, it is showing only 1999
Say this is your data:
library(plyr) # <- don't forget to tell us what libraries you are using
give us an easy sample set
my_data <- data.frame(year=sample(c("1999","2002","2005","2008"), 10, replace=T), PM2.5 = rnorm(10,mean = 5))
my_data <- arrange(my_data,year)
my_data$year <- as.factor(my_data$year)
my_data$PM2.5 <- as.numeric(my_data$PM2.5)
> my_data
year PM2.5
1 1999 5.556852
2 2002 5.508820
3 2002 4.836500
4 2002 3.766266
5 2005 6.688936
6 2005 5.025600
7 2005 4.041670
8 2005 4.614784
9 2005 4.352046
10 2008 6.378134
One way to do it (out of many, many ways already shown by a simple google search):
> with(my_data, (aggregate(PM2.5, by=list(year), FUN="sum")))
Group.1 x
1 1999 5.556852
2 2002 14.111586
3 2005 24.723037
4 2008 6.378134

Aggregate using a certain value

I'm trying to use the aggregate function in R to get the mean EMISSIONS, organized by YEAR, but only for rows where FIPS is equal to 24510. The following code gives me the right result, but in addition it also adds the overall EMISSIONS, summed across all FIPS values. What am I missing here?
This is the function I'm using:
sum <- aggregate(NEI$Emissions, list(Year = NEI$year, NEI$fips == 24510), sum);
This is the output:
Year Group.2 x
1 1999 FALSE 7329692.557
2 2002 FALSE 5633326.582
3 2005 FALSE 5451611.723
4 2008 FALSE 3462343.556
5 1999 TRUE 3274.180
6 2002 TRUE 2453.916
7 2005 TRUE 3091.354
8 2008 TRUE 1862.282
This is the output that I would like:
Year x
1 1999 3274.180
2 2002 2453.916
3 2005 3091.354
4 2008 1862.282
Should I be using subset separately or can this be done with aggregate alone?
Using this sample
set.seed(15)
NEI <- data.frame(year=2000:2004, fips=rep(c(24510,57399), each=5), Emissions=rnorm(10))
you could use the command
mysum <- aggregate(Emissions~year, subset(NEI, fips == 24510), sum);
to get
year Emissions
1 2000 0.2588229
2 2001 1.8311207
3 2002 -0.3396186
4 2003 0.8971982
5 2004 0.4880163
(also, don't save a value to a variable named sum -- that will conflict with the base function sum())

writing the outcome of a nested loop to a vector object in R

I have the following data read into R as a data frame named "data_old":
yes year month
1 15 2004 5
2 9 2005 6
3 15 2006 3
4 12 2004 5
5 14 2005 1
6 15 2006 7
. . ... .
. . ... .
I have written a small loop which goes through the data and sums up the yes variable for each month/year combination:
year_f <- c(2004:2006)
month_f <- c(1:12)
for (i in year_f){
for (j in month_f){
x <- subset(data_old, month == j & year == i, select="yes")
if (nrow(x) > 0){
print(sum(x))
}
else{print("Nothing")}
}
}
My question is this: I can print the sum for each month/year combination in the terminal, but how do i store it in a vector? (the nested loop is giving me headaches trying to figure this out).
Thomas
Another way,
library(plyr)
ddply(data_old,.(year,month),function(x) sum(x[1]))
year month V1
1 2004 5 27
2 2005 1 14
3 2005 6 9
4 2006 3 15
5 2006 7 15
Forget the loops, you want to use an aggregation function. There's a recent discussion of them in this SO question.
with(data_old, tapply(yes, list(year, month), sum))
is one of many solutions.
Also, you don't need to use c() when you aren't concatenating anything. Plain 1:12 is fine.
Just to add a third option:
aggregate(yes ~ year + month, FUN=sum, data=data_old)

Resources