Inplace updating of function arguments - julia

I need an efficient implementation of the cartesian product for a variable number of arrays.
I have tried the product function from Iterators.jl, but the performance was lacking.
I am a python hacker and have used this function from sklearn and have had good performance results with it.
I have tried to write a Julia version of this function, but am not able to produce the same results as the python function.
My code is:
function my_repeat(a, n)
# mimics numpy.repeat
m = size(a, 1)
out = Array(eltype(a), n * m)
out[1:n] = a[1]
for i=2:m
out[(i-1)*n+1:i*n] = a[i]
end
return out
end
function cartesian(arrs; out=None)
dtype = eltype(arrs[1])
n = prod([size(i, 1) for i in arrs])
if is(out, None)
out = Array(dtype, n, length(arrs))
end
m = int(n / size(arrs[1], 1))
out[:, 1] = my_repeat(arrs[1], m)
if length(arrs[2:]) > 0
cartesian(arrs[2:], out=out[1:m, 2:])
for j = 1:size(arrs[1], 1)-1
out[(j*m + 1):(j+1)*m, 2:] = out[1:m, 2:]
end
end
return out
end
I test it with the following:
aa = ([1, 2, 3], [4, 5], [6, 7])
cartesian(aa)
The return value is:
12x3 Array{Float64,2}:
1.0 9.88131e-324 2.13149e-314
1.0 2.76235e-318 2.13149e-314
1.0 9.88131e-324 2.13676e-314
1.0 9.88131e-324 2.13676e-314
2.0 9.88131e-324 2.13149e-314
2.0 2.76235e-318 2.13149e-314
2.0 9.88131e-324 2.13676e-314
2.0 9.88131e-324 2.13676e-314
3.0 9.88131e-324 2.13149e-314
3.0 2.76235e-318 2.13149e-314
3.0 9.88131e-324 2.13676e-314
3.0 9.88131e-324 2.13676e-314
I believe that the problem here is that when I use this line: cartesian(arrs[2:], out=out[1:m, 2:]), the keyword argument out is not updated inplace in the recursive calls.
As can be seen, I have done a very naive translation of the Python version of this function (see link from above). It might well be possible that there are internal language differences that make a naive translation impossible. I don't think this is true because of this quote from the functions section of the julia documentation:
Julia function arguments follow a convention sometimes called “pass-by-sharing”, which means that values are not copied when they are passed to functions. Function arguments themselves act as new variable bindings (new locations that can refer to values), but the values they refer to are identical to the passed values. Modifications to mutable values (such as Arrays) made within a function will be visible to the caller. This is the same behavior found in Scheme, most Lisps, Python, Ruby and Perl, among other dynamic languages.
How can I make this (or an equivalent) function work in Julia?

There's a repeat function in Base.
A shorter and faster variant might use the #forcartesian macro in the Cartesian package:
using Cartesian
function cartprod(arrs, out=Array(eltype(arrs[1]), prod([length(a) for a in arrs]), length(arrs)))
sz = Int[length(a) for a in arrs]
narrs = length(arrs)
#forcartesian I sz begin
k = sub2ind(sz, I)
for i = 1:narrs
out[k,i] = arrs[i][I[i]]
end
end
out
end
The order of rows is different than your solution, but perhaps that doesn't matter?

I figured it out.
It it not an issue of Julia not updating function arguments in place, but instead a problem with the using slice operator a[ind], which makes a copy of the data, instead of indexing my array by reference. This part of the multi dimensional array documentation held the answer:
SubArray is a specialization of AbstractArray that performs indexing by reference rather than by copying. A SubArray is created with the sub function, which is called the same way as getindex (with an array and a series of index arguments). The result of sub looks the same as the result of getindex, except the data is left in place. sub stores the input index vectors in a SubArray object, which can later be used to index the original array indirectly.
The problem was fixed by changing this line from:
cartesian(arrs[2:], out=out[1:m, 2:])
to the following:
out_end = size(out, 2)
cartesian(arrs[2:], out=sub(out, 1:m, 2:out_end))

This is an old question, but the answer has changed as Julia has progressed.
The basic problem is that slices like a[1:3,:] make a copy. If you update that copy in a function, it has no effect on a itself.
The modern answer is to use #view a[1:3,:] to get a reference to part of the underlying array. Updates to this view will be reflected in the underlying array.
You can force an entire block of code to use view-semantics with the #views macro.
See Inplace updating of function arguments for more discussion.

Related

Optimizing a recursive function with metaprogramming in Julia

Following the approach of this answer I am trying to understand what happens exactly and how expressions and generated functions work in Julia within the concept of metaprogramming.
The goal is to optimize a recursive function using expressions and generated functions (for a concrete example you can have a look at the question answered in the link provided above).
Consider the following modified fibonacci function, in which I want to compute the fibonacci series up to n and multiply it by a number p.
The straightforward, recursive implementation would be
function fib(n::Integer, p::Real)
if n <= 1
return 1 * p
else
return n * fib(n-1, p)
end
end
As a first step, I could define a function which returns an expression instead of the computed value
function fib_expr(n::Integer, p::Symbol)
if n <= 1
return :(1 * $p)
else
return :($n * $(fib_expr(n-1, p)))
end
end
which, e.g. returns something like
julia> ex = fib_expr(3, :myp)
:(3 * (2 * (1myp)))
In this way I get an expression which is fully expanded and depends on the value assigned to the symbol myp. In this way I do not see the recursion anymore, basically I am metaprogramming: I created a function that creates another "function" (in this case we call it expression though).
I can now set myp = 0.5 and call eval(ex) to compute the result.
However, this is slower than the first approach.
What I can do though, is to generate a parametric function in the following way
#generated function fib_gen{n}(::Type{Val{n}}, p::Real)
return fib_expr(n, :p)
end
And magically, calling fib_gen(Val{3}, 0.5) gets things done, and is incredibly fast.
So, what is going on?
To my understanding, in the first call to fib_gen(Val{3}, 0.5), the parametric function fib_gen{Val{3}}(...) gets compiled and its content is the fully expanded expression obtained through fib_expr(3, :p), i.e. 3*2*1*p with p substituted with the input value.
The reason why it is so fast then, is because fib_gen is basically just a series of multiplications, whereas the original fib has to allocate on the stack every single recursive call making it slower, am I correct?
To give some numbers, here is my short benchmark using BenchmarkTools.
julia> #benchmark fib(10, 0.5)
...
mean time: 26.373 ns
...
julia> p = 0.5
0.5
julia> #benchmark eval(fib_expr(10, :p))
...
mean time: 177.906 μs
...
julia> #benchmark fib_gen(Val{10}, 0.5)
...
mean time: 2.046 ns
...
I have many questions:
Why the second case is so slow?
What exactly is and means ::Type{Val{n}}? (I copied that from the answer linked above)
Because of the JIT compiler, sometimes I am lost in what happens at compile-time and at run-time, as it is the case here...
Furthermore, I tried to combine fib_expr and fib_gen in a single function according to
#generated function fib_tot{n}(::Type{Val{n}}, p::Real)
if n <= 1
return :(1 * p)
else
return :(n * fib_tot(Val{n-1}, p))
end
end
which however is slow
julia> #benchmark fib_tot(Val{10}, 0.5)
...
mean time: 4.601 μs
...
What am I doing wrong here? Is it even possible to combine fib_expr and fib_gen in a single function?
I realize this is more a monograph rather than a question, however, even though I read the metaprogramming section few times, I am having a hard time to grasp everything, in particular with an applied example such as this one.
A monograph in response:
Metaprogramming basics
It will be easier to start with "normal" macros first. I'll relax the definition you used a bit:
function fib_expr(n::Integer, p)
if n <= 1
return :(1 * $p)
else
return :($n * $(fib_expr(n-1, p)))
end
end
That allows to pass in more than just symbols for p, like integer literals or whole expressions. Given this, we can define a macro for the same functionality:
macro fib_macro(n::Integer, p)
fib_expr(n, p)
end
Now, if #fib_macro 45 1 is used anywhere in the code, at compile time it will first be replaced by a long nested expression
:(45 * (44 * ... * (1 * 1)) ... )
and then compiled normally -- to a constant.
That's all there is to macros, really. Replacing syntax during compile time; and by recursion, this can be an arbitrarily long alteration between compiling, and evaluating functions on expressions. And for things that are essentially constant, but tedious to write otherwise, it is very useful: a bood example example is Base.Math.#evalpoly.
Evaluation at runtime?
But it has the problem that you cannot inspect values which are only known at runtime: you can't implement fib(n) = #fib_macro n 1, since at compile time, n is a symbol representing the parameter, and not a number you can dispatch on.
The next best solution to this would be to use
fib_eval(n::Integer) = eval(fib_expr(n, 1))
which works, but will repeat the compilation process every time it is called -- and that is much more overhead than the original function, since now at runtime, we perform the whole recursion on the expression tree and then call the compiler on the result. Not good.
Method dispatch & compilation
So we need a way to intermingle runtime and compile time. Enter #generated functions. These will at runtime dispatch on a type, and then work like a macro defining the function body.
First about type dispatch. If we have
f(x) = x + 1
and have a function call f(1), about the following will happen:
The type of the argument is determined (Int)
The method table of the function is consulted to find the best matching method
The method body is compiled for the specific Int argument type, if that hasn't been done before
The compiled method is evaluated on the concrete argument
If we then enter f(1.0), the same will happen again, with a new, different specialized method being compiled for Float64, based on the same function body.
Value types & singleton types
Now, Julia has the peculiar feature that you can use numbers as types. That means that the dispatch process outlined above will also work on the following function:
g(::Type{Val{N}}) where N = N + 1
That's a bit tricky. Remember that types are themselves values in Julia: Int isa Type.
Here, Val{N} is for every N a so-called singleton type having exactly one instance, namely Val{N}() -- just like Int is a type having many instances 0, -1, 1, -2, ....
Type{T} is also a singleton type, having as its single instance the type T. Int is a Type{Int}, and Val{3} is a Type{Val{3}} -- in fact, both are the only values of their type.
So, for each N, there is a type Val{N}, being the single instance of Type{Val{N}}. Thus, g will be dispatched and compiled for each single N. This is how we can dispatch on numbers as types. This already allows for optimization:
julia> #code_llvm g(Val{1})
define i64 #julia_g_61158(i8**) #0 !dbg !5 {
top:
ret i64 2
}
julia> #code_llvm f(1)
define i64 #julia_f_61076(i64) #0 !dbg !5 {
top:
%1 = shl i64 %0, 2
%2 = or i64 %1, 3
%3 = mul i64 %2, %0
%4 = add i64 %3, 2
ret i64 %4
}
But remember that it requires compilation for each new N at the first call.
(And fkt(::T) is just short for fkt(x::T) if you don't use x in the body.)
Integrating generating functions and value types
Finally to generated functions. They work as a slight modification of the above dispatch pattern:
The type of the argument is determined (Int)
The method table of the function is consulted to find the best matching method
The method body is treated as a macro and called with the Int argument type as a parameter, if that hasn't been done before. The resulting expression is compiled into a method.
The compiled method is evaluated on the concrete argument
This pattern allows to change the implementation for each type which the function is dispatched on.
For our concrete setting, we want to dispatch on the Val types representing the arguments of the Fibonacci sequence:
#generated function fib_gen{n}(::Type{Val{n}}, p::Real)
return fib_expr(n, :p)
end
You now see that your explanation was exactly right:
in the first call to fib_gen(Val{3}, 0.5), the parametric function
fib_gen{Val{3}}(...) gets compiled and its content is the fully
expanded expression obtained through fib_expr(3, :p), i.e. 3*2*1*p
with p substituted with the input value.
I hope that the whole story has also answered all three of your listed questions:
The implementation using eval replicates the recursion every time, plus the overhead of compilation
Val is a trick to lift numbers to types, and Type{T} the singleton type containing only T -- but I hope the examples were helpful enough
Compile time is not before execution, because of JIT -- it is every time a method gets compiled first time, because it get's called.
First of all, I am joining myself to the comments: your question is very well written & constructive.
I have reproduced your results using Julia 0.7-beta.
Difference between #generated fib_tot (one piece of code) and fib_gen (that calls fib_expr)
With my julia version results are identicals:
julia> #btime fib_tot(Val{10},0.5)
0.042 ns (0 allocations: 0 bytes)
1.8144e6
julia> #btime fib_gen(Val{10},0.5)
0.042 ns (0 allocations: 0 bytes)
1.8144e6
Sometimes breaking a function into multiple parts see official doc:performance tips can be useful, however in your peculiar case I do not see why this could be useful. At compile time Julia has everything it needs to optimize fib_tot. There is a branch if n<=1 however n is known at "compile time" thanks to the Type{Val{n}} trick and this branch should be removed without problem in the generated (specialized) code.
The Type{Val{n}} trick
To specialize functions, Julia inference is performed according to argument type and not according to argument value.
For instance a compiled version of foo(n::Int) = ... is not generated for each n value. You must define a type that depends on n value to reach this goal. This is precisely how Type{Val{n}} works: Val{n} is simply a parametrized empty structure:
struct Val{T} end
Hence, each Val{1}, Val{2}, ... Val{100}, ... is a different type. By consequence, if foo is defined as:
foo(::Type{Val{n}}) where {n} = ...
Each foo(Val{1}), foo(Val{2}), ... foo(Val{100}) will trigger a specialized foo version (because argument type is different).
The eval(fib_expr(n, 1)) case
This
julia> #btime eval(fib_expr(10, :p))
401.651 μs (99 allocations: 6.45 KiB)
1.8144e6
is slow because your expression is (re-)compiled every time. The problem can be avoided if you use a macro instead (see phg answer).
The fib version
.
julia> #btime fib(10,0.5)
30.778 ns (0 allocations: 0 bytes)
1.8144e6
There is only one compiled version of this fib function. By consequence, it must contain all the runtime branch tests etc... This explains how slow it is.
Just a remark about:
foo{n}(::Type{Val{n}}) deprecated syntax
The foo{n}(::Type{Val{n}}) syntax is deprecated, the new one is foo(::Type{Val{n}}) where {n}. You can read Julia doc, parametric methods for further details.
My Julia version:
julia> versioninfo()
Julia Version 0.7.0-beta.0
Commit f41b1ecaec (2018-06-24 01:32 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Xeon(R) CPU E5-2603 v3 # 1.60GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-6.0.0 (ORCJIT, haswell)

What does the "Base" keyword mean in Julia?

I saw this example in the Julia language documentation. It uses something called Base. What is this Base?
immutable Squares
count::Int
end
Base.start(::Squares) = 1
Base.next(S::Squares, state) = (state*state, state+1)
Base.done(S::Squares, s) = s > S.count;
Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type
Base.length(S::Squares) = S.count;
Base is a module which defines many of the functions, types and macros used in the Julia language. You can view the files for everything it contains here or call whos(Base) to print a list.
In fact, these functions and types (which include things like sum and Int) are so fundamental to the language that they are included in Julia's top-level scope by default.
This means that we can just use sum instead of Base.sum every time we want to use that particular function. Both names refer to the same thing:
Julia> sum === Base.sum
true
Julia> #which sum # show where the name is defined
Base
So why, you might ask, is it necessary is write things like Base.start instead of simply start?
The point is that start is just a name. We are free to rebind names in the top-level scope to anything we like. For instance start = 0 will rebind the name 'start' to the integer 0 (so that it no longer refers to Base.start).
Concentrating now on the specific example in docs, if we simply wrote start(::Squares) = 1, then we find that we have created a new function with 1 method:
Julia> start
start (generic function with 1 method)
But Julia's iterator interface (invoked using the for loop) requires us to add the new method to Base.start! We haven't done this and so we get an error if we try to iterate:
julia> for i in Squares(7)
println(i)
end
ERROR: MethodError: no method matching start(::Squares)
By updating the Base.start function instead by writing Base.start(::Squares) = 1, the iterator interface can use the method for the Squares type and iteration will work as we expect (as long as Base.done and Base.next are also extended for this type).
I'll grant that for something so fundamental, the explanation is buried a bit far down in the documentation, but http://docs.julialang.org/en/release-0.4/manual/modules/#standard-modules describes this:
There are three important standard modules: Main, Core, and Base.
Base is the standard library (the contents of base/). All modules
implicitly contain using Base, since this is needed in the vast
majority of cases.

Given a function object, how do I find its name and module?

Given a function object f, how do I find:
Function's name.
Module(s) of its method(s)?
In Julia 0.4 I was able to find name using f.env.name, but no tips for module. For Julia 0.5 I wasn't able to find any of two.
Name is easy: Symbol(f) or string(f) if you want a string
Module is, as you know going to be per method (i.e per type signature).
methods(f) with return a method table that prints out all the methods and where they are, in terms of files.
You can do [meth.module for meth in methods(f)] to get there modules
So to use an example, the collect function.
julia> using DataStructures #so we have some non-Base definitions
julia> Symbol(collect)
:collect
julia> methods(collect)
# 5 methods for generic function "collect":
collect(r::Range) at range.jl:813
collect{T}(::Type{T}, itr) at array.jl:211
collect(itr::Base.Generator) at array.jl:265
collect{T}(q::DataStructures.Deque{T}) at /home/ubuntu/.julia/v0.5/DataStructures/src/deque.jl:170
collect(itr) at array.jl:236
julia> [meth.module for meth in methods(collect)]
5-element Array{Module,1}:
Base
Base
Base
DataStructures
Base
julia> first(methods(collect, (Deque,))).module
DataStructures
#oxinabox's answer is correct. To add, typeof(f).name.mt.name is the v0.5 replacement for f.env.name. That can be useful to avoid the . that occurs when just applying string to a function introduced in a non-stdlib module. There also exists Base.function_name(f) which is probably less likely to break when the Julia version changes.
To get the module that a function (type) is introduced in, rather than the modules of individual methods, there's typeof(f).name.module, or the probably-better version, Base.function_module(f). The module of the method table is probably the same; that can be obtained through typeof(f).name.mt.module.
Note that f.env in v0.4 is a direct equivalent of typeof(f).name.mt, so on v0.4 the same f.env.name and f.env.module apply.
In Julia 1.x the commands are:
Base.nameof
Base.parentmodule
Since this two methods are exported, also nameof and parentmodule works.
Not exactly the answer but closely related: you can find the file name and line number of f using functionloc(f)

Immutable dictionary

Is there a way to enforce a dictionary being constant?
I have a function which reads out a file for parameters (and ignores comments) and stores it in a dict:
function getparameters(filename::AbstractString)
f = open(filename,"r")
dict = Dict{AbstractString, AbstractString}()
for ln in eachline(f)
m = match(r"^\s*(?P<key>\w+)\s+(?P<value>[\w+-.]+)", ln)
if m != nothing
dict[m[:key]] = m[:value]
end
end
close(f)
return dict
end
This works just fine. Since i have a lot of parameters, which i will end up using on different places, my idea was to let this dict be global. And as we all know, global variables are not that great, so i wanted to ensure that the dict and its members are immutable.
Is this a good approach? How do i do it? Do i have to do it?
Bonus answerable stuff :)
Is my code even ok? (it is the first thing i did with julia, and coming from c/c++ and python i have the tendencies to do things differently.) Do i need to check whether the file is actually open? Is my reading of the file "julia"-like? I could also readall and then use eachmatch. I don't see the "right way to do it" (like in python).
Why not use an ImmutableDict? It's defined in base but not exported. You use one as follows:
julia> id = Base.ImmutableDict("key1"=>1)
Base.ImmutableDict{String,Int64} with 1 entry:
"key1" => 1
julia> id["key1"]
1
julia> id["key1"] = 2
ERROR: MethodError: no method matching setindex!(::Base.ImmutableDict{String,Int64}, ::Int64, ::String)
in eval(::Module, ::Any) at .\boot.jl:234
in macro expansion at .\REPL.jl:92 [inlined]
in (::Base.REPL.##1#2{Base.REPL.REPLBackend})() at .\event.jl:46
julia> id2 = Base.ImmutableDict(id,"key2"=>2)
Base.ImmutableDict{String,Int64} with 2 entries:
"key2" => 2
"key1" => 1
julia> id.value
1
You may want to define a constructor which takes in an array of pairs (or keys and values) and uses that algorithm to define the whole dict (that's the only way to do so, see the note at the bottom).
Just an added note, the actual internal representation is that each dictionary only contains one key-value pair, and a dictionary. The get method just walks through the dictionaries checking if it has the right value. The reason for this is because arrays are mutable: if you did a naive construction of an immutable type with a mutable field, the field is still mutable and thus while id["key1"]=2 wouldn't work, id.keys[1]=2 would. They go around this by not using a mutable type for holding the values (thus holding only single values) and then also holding an immutable dict. If you wanted to make this work directly on arrays, you could use something like ImmutableArrays.jl but I don't think that you'd get a performance advantage because you'd still have to loop through the array when checking for a key...
First off, I am new to Julia (I have been using/learning it since only two weeks). So do not put any confidence in what I am going to say unless it is validated by others.
The dictionary data structure Dict is defined here
julia/base/dict.jl
There is also a data structure called ImmutableDict in that file. However as const variables aren't actually const why would immutable dictionaries be immutable?
The comment states:
ImmutableDict is a Dictionary implemented as an immutable linked list,
which is optimal for small dictionaries that are constructed over many individual insertions
Note that it is not possible to remove a value, although it can be partially overridden and hidden
by inserting a new value with the same key
So let us call what you want to define as a dictionary UnmodifiableDict to avoid confusion. Such object would probably have
a similar data structure as Dict.
a constructor that takes a Dict as input to fill its data structure.
specialization (a new dispatch?) of the the method setindex! that is called by the operator [] =
in order to forbid modification of the data structure. This should be the case of all other functions that end with ! and hence modify the data.
As far as I understood, It is only possible to have subtypes of abstract types. Therefore you can't make UnmodifiableDict as a subtype of Dict and only redefine functions such as setindex!
Unfortunately this is a needed restriction for having run-time types and not compile-time types. You can't have such a good performance without a few restrictions.
Bottom line:
The only solution I see is to copy paste the code of the type Dict and its functions, replace Dict by UnmodifiableDict everywhere and modify the functions that end with ! to raise an exception if called.
you may also want to have a look at those threads.
https://groups.google.com/forum/#!topic/julia-users/n-lqjybIO_w
https://github.com/JuliaLang/julia/issues/1974
REVISION
Thanks to Chris Rackauckas for pointing out the error in my earlier response. I'll leave it below as an illustration of what doesn't work. But, Chris is right, the const declaration doesn't actually seem to improve performance when you feed the dictionary into the function. Thus, see Chris' answer for the best resolution to this issue:
D1 = [i => sind(i) for i = 0.0:5:3600];
const D2 = [i => sind(i) for i = 0.0:5:3600];
function test(D)
for jdx = 1:1000
# D[2] = 2
for idx = 0.0:5:3600
a = D[idx]
end
end
end
## Times given after an initial run to allow for compiling
#time test(D1); # 0.017789 seconds (4 allocations: 160 bytes)
#time test(D2); # 0.015075 seconds (4 allocations: 160 bytes)
Old Response
If you want your dictionary to be a constant, you can use:
const MyDict = getparameters( .. )
Update Keep in mind though that in base Julia, unlike some other languages, it's not that you cannot redefine constants, instead, it's just that you get a warning when doing so.
julia> const a = 2
2
julia> a = 3
WARNING: redefining constant a
3
julia> a
3
It is odd that you don't get the constant redefinition warning when adding a new key-val pair to the dictionary. But, you still see the performance boost from declaring it as a constant:
D1 = [i => sind(i) for i = 0.0:5:3600];
const D2 = [i => sind(i) for i = 0.0:5:3600];
function test1()
for jdx = 1:1000
for idx = 0.0:5:3600
a = D1[idx]
end
end
end
function test2()
for jdx = 1:1000
for idx = 0.0:5:3600
a = D2[idx]
end
end
end
## Times given after an initial run to allow for compiling
#time test1(); # 0.049204 seconds (1.44 M allocations: 22.003 MB, 5.64% gc time)
#time test2(); # 0.013657 seconds (4 allocations: 160 bytes)
To add to the existing answers, if you like immutability and would like to get performant (but still persistent) operations which change and extend the dictionary, check out FunctionalCollections.jl's PersistentHashMap type.
If you want to maximize performance and take maximal advantage of immutability, and you don't plan on doing any operations on the dictionary whatsoever, consider implementing a perfect hash function-based dictionary. In fact, if your dictionary is a compile-time constant, these can even be computed ahead of time (using metaprogramming) and precompiled.

How to create a collection in Julia?

This seems like a really basic question, but can't find the answer. How do I create a collection in Julia? For example, I want to open a text file and parse each line to create an (iterable or otherwise) collection. Obviously I don't know how many elements there are in advance.
I can iterate through the lines like this
I = each_line(open(fileName,"r"))
state = start(I)
while !done(I, state)
(i, state) = next(I, state)
println(i)
end
But I don't know how to put each i into an array or other collection. I tried
map( i -> println(i), each_line(open(fileName,"r") ) )
But got the error
no method map(Function,EachLine)
You could do this:
lines = String[]
for line in each_line(open(fileName))
push!(lines, line)
end
And then lines contains the list of lines. You need the String in the first line to make the array extensible.
Standard collections and supported operations are mainly covered in the standard library documentation.
Specifically, the Deques section covers all of the operations supported by the 1d Array type (vector), including push! and pop! as well as insertion, resizing, etc.
Omar's answer is correct, and I will just add a small qualification: String[] creates a 1d array of Strings. The same constructor syntax may be used for example to create Int[], Float[], or even Any[] vectors. The latter type may hold objects of any type.
Depending on your Julia version, you may also be able to write collect(eachline(open("LICENSE.md"))) or [eachline(open("LICENSE.md"))...]. I think these won't work in 0.1.x versions but will working in newer 0.2 development versions (which are recommended at this point – 0.2 is on its way soon).

Resources