I am having a bit of problems with recursion. Just want to make sure I get better. Let's say I want to see if a n number is in a list. If it is, it returns true, otherwise, false.
(define (contains? n lst)
(cond
[(empty? lst) false]
[(cons? lst)
..... (first lst)
(contains? (rest lst)
the recursion part always tricks me. Is it necessary to call cons? here? Because if you are just looking for the first of a list, it isn.t
(define (contains? n lst)
(cond
[(empty? lst) false]
[(= n (first lst)) true]))
(check-expect (contains? 1 (list 1 2)) true)
(check-expect (contains? 1 empty) false)
No, you don't have to use cons? in the case of a list of numbers (or in general: a list of atoms): either the list is empty or is non-empty. You'd only use cons? to check if the parameter is not a list, but in general you don't have to validate this: if it isn't a list, then the function fails (as it should).
A wholly different matter happens when you have a list of lists: in that case we have to use cons? (or equvalently: pair?) to test if the first element is a list itself, and also advance the recursion over it. But for the current example, what you do have to consider, is in these three cases:
(define (contains? n lst)
(cond
[(empty? lst) false] ; the list is empty
[(= (first lst) n) true] ; current element is the one we're looking for
[else (contains? n (rest lst))])) ; current element is not the one, keep looking
Related
This function is supposed to take a list (full of strings or ints, which is why it starts with that 'if' statement) and check to see if it is in ascending order.
I haven't been able to figure out how to keep it from crashing, as on the last recursive call, the 'cadr' has nothing to pull from, as the 'car' is the final element.
(define (my-sorted? lst)
(if (number? (car lst))
(if (< (car lst) (cadr lst))
(my-sorted? (rest lst))
#f)
#f)
)
I know that the sorted function exists, but I need to implement this function recursively.
Thanks for any help.
The two most basic lists that you should try are:
(my-sorted? '()) ; ==> #t (empty list is always sorted)
(my-sorted? '(1)) ; ==> #t (one element list is always sorted)
Your current code just does car and cadr on its argument so it will fail at different levels with these two tests.
The there is how to compare a number and something which is not a number. < expects both arguments to be numbers, but your list can be both strings and numbers. What is smaller of "x" and 7? You cannot do (< 7 "x").
Instead of nesting if you might consider cond which is lisps way of doing if-elseif-else. Basically you can do your code with cond like this:
(cond
((not (number? (car lst))) #f)
((< (car lst) (cadr lst)) (my-sorted? (rest lst))
(else #f))
EDIT
Since the list should either be all elements as string or all as number you simply can just determine the comparison function by looking at the first element and do your recursion with a named let and reuse the one based on the first element.
(define (my-sorted lst)
;; determine what comparison function to use, bind it to greater?
(define greater?
(if (and (pair? lst) (number? (car lst)))
>
string>?))
;; main recursive loop uses that one function
;; this can be done with define + call as well
(let loop ((lst lst))
(cond ((or (null? lst) (null? (cdr lst))) ...)
((greater? (car lst) (cadr lst)) ...)
(else (loop ...)))))
I want to append the element b to the list a (let's say (a1, a2, ... an)), e.g. appending the number 3 to (1 2) gives (1 2 3)
So far I've been doing
(append a (list b)), which is kind of long and inelegant, so I wonder if there's a "better" way...
Are you building a list piecemeal, an item at a time? If so, the idiomatic way to do this is to build the list backward, using cons, and then reversing the final result:
(define (map-using-cons-and-reverse f lst)
(let loop ((result '())
(rest lst))
(if (null? rest)
(reverse result)
(loop (cons (f (car rest)) (cdr rest))))))
Alternatively, if your list-building is amenable to a "right-fold" recursive approach, that is also idiomatic:
(define (map-using-recursion f lst)
(let recur ((rest lst))
(if (null? rest)
'()
(cons (f (car rest)) (recur (cdr rest))))))
The above code snippets are just for illustrating the solution approach to take in the general case; for things that are directly implementable using fold, like map, using fold is more idiomatic:
(define (map-using-cons-and-reverse f lst)
(reverse (foldl (lambda (item result)
(cons (f item) result))
'() lst)))
(define (map-using-recursion f lst)
(foldr (lambda (item result)
(cons (f item) result))
'() lst))
How frequent do you have to append to the end?
If you want to do it a lot (more than cons'ing to the front), then you are doing it wrong. The right way is to flip things around: think that cons put things to the back, first retrieves the last element, rest retrieves everything but last, etc. Then, you can use list normally.
However, if you want to put things to the end of the list as frequent as to cons things to the front, then this is the best that you can do with one list. You could write a function to wrap what you consider "inelegant". Traditionally it's called snoc (backward cons)
(define (snoc lst e) (append lst (list e)))
Or if you prefer to implement the whole thing by yourself:
(define (snoc lst e)
(cond
[(empty? lst) (list e)]
[(cons? lst) (cons (first lst) (snoc (rest lst) e))]))
Note that both approaches have the same time complexity: O(n) where n is length of the list.
But if you want it to be efficient, you can use a data structure called double-ended queue, which is very efficient (constant time per operation). See http://www.westpoint.edu/eecs/SiteAssets/SitePages/Faculty%20Publication%20Documents/Okasaki/jfp95queue.pdf for more details.
I'm trying to write a simple procedure for finding the n:th prime but I don't think I understand how to reference variables correctly in racket.
What I want is for the inner procedure sieve-iter to add primes to the list primlst which is in the namespace of sieve but I get an infinite loop. My guess is that primlst within sieve-iter is causing issues.
(define (sieve n) ;; returns the n:th prime (n>0)
(let [(primlst '(2))
(cand 3)]
(define (sieve-iter i lst)
(cond ((null? lst) (and (cons i primlst) (sieve-iter (+ i 2) primlst))) ;;prime
((= (length primlst) n) (car primlst)) ;;end
((= (modulo i (car lst)) 0) (sieve-iter (+ i 2) primlst)) ;;non-prime
(#t (sieve-iter n (cdr lst))))) ;;unclear if prime
(sieve-iter cand primlst)))
Any help is appreciated!
First of all, you shouldn't refer to primlist at all within the sieve-iter function. Instead, you should refer to lst.
Second of all, you appear to be mistaken on the effect of this expression:
(and (cons i primlst) (sieve-iter (+ i 2) primlst))
You seem to be interpreting that as meaning "Add i to the primlist and then start the next iteration."
(cons i primlist) changes nothing. Instead, it creates a new list consisting of primlist with i in front of it and then evaluates to that value. The original primlist (which should have been lst anyway) is left untouched.
Also, and is for Boolean logic, not for stringing commands together. It evaluates each of its subexpressions separately until it finds one that evaluates to #f and then it stops.
You should replace that whole expression with this:
(sieve-iter (+ i 2) (cons i lst))
...which passes the new list created by cons to the next run of sieve-iter.
Your trying to do too much in one function, let prime-iter just worry about the iteration to build up the list of primes. Make another internal function to recurse down the existing primes to test the new candidate.
(define (sieve n) ;; returns the n:th prime (n>0)
(define (sieve-iter i lst remaining)
(cond ;((null? lst) (and (cons i primlst) (sieve-iter (+ i 2) primlst))) ;;should never be null, we are building the list up
((<= remaining 0) (car lst)) ;;checking length every time gets expensive added a variable to the function
((sieve-prime? i lst) ;;if prime add to lst and recurse on next i
(sieve-iter (+ i 2) (cons i lst) (- remaining 1)))
(else
(sieve-iter (+ i 2) lst remaining)))) ; else try next
(define (sieve-prime? i lst)
(cond ((null? lst) #t)
((= 0 (modulo i (car lst))) #f)
(else (sieve-prime? i (cdr lst)))))
(let ((primlst '(2)) ;;you generally don't modify these,
(cand 3)) ;mostly they just bind values to name for convenience or keep from having to re-calculate the same thing more than once
(sieve-iter cand primlst (- n 1))))
You could have used set! to modify primlist where it was before, but the procedure is no longer obviously a pure function.
There is another low-handing optimization possible here, when calling sieve-prime? filter the lst argument to remove values larger than the square root of i.
I'm using scheme as part of a course I'm taking. I've been told to use high order functions in my homework. However this instruction seems somewhat unclear.
I don't fully understand the idea of a high order procedure. I'm able to do all the questions using recursion but that it's the same thing. Can anyone explain it with an example of a recursive function vs one written with a high order procedure.
As a second question:
Example: try to grab all the odd numbers
I could use (flatten (map odd ((1 4 5) (4 5 1 4 9)))), but what if there were nested lists, can I use map on a nested lists like:
(flatten (map odd ((1 3 (9 5 7)))) ; is there a function for this or a clean way to do it?
The point of a higher-order function is to reduce the boilerplate in your code, and to decrease coupling between the looping (technically it's a recursion, but its purpose is looping, so I will refer to it as such) and the actual logic. Here's an example (re grabbing all the odd numbers): a manual loop would look like this:
(define (filter-odd lst)
(cond ((null? lst) '())
((odd? (car lst)) (cons (car lst) (filter-odd (cdr lst))))
(else (filter-odd (cdr lst)))))
But notice that you've got the looping and the filtering in one function. This makes it harder to figure out what the function is doing, since these two unrelated operations are coupled together. With higher-level functions, you can do differently:
(define (filter pred lst)
(cond ((null? lst) '())
((pred (car lst)) (cons (car lst) (filter pred (cdr lst))))
(else (filter pred (cdr lst)))))
(define (filter-odd lst)
(filter odd? lst))
Notice now, how odd? is separated from the looping logic, which has now been separated into filter? filter now takes a function object which decides whether the item is to be kept or not, and callers of filter can slot in any function of their choice.
That is what is meant by a higher-order function: it's a function that takes a function object as a parameter, to customise its operation.
As mentioned in the original edit of your question, map is another higher-order function, but instead of filtering items from a list, it returns a transformation of every item in the original list, where the specific transformation is given by map's caller via a parameter.
To answer your actual question about flattening, etc., (map filter-odd '((1 3 (9 5 7)))) will return a list with a single item, the result of calling (filter-odd '(1 3 (9 5 7))). So no, map will not recurse into sublists for you (and neither will filter).
But you can flatten the input first (since you're flattening the output anyway), then call filter-odd on that directly. I hope that will give you the result you expect.
(I renamed your odd to filter-odd, since that is less likely to be confused with odd? (the predicate).)
Bonus material
By the way, both filter and map are specialisations of a much more general higher-order function, called a fold (or more specifically, a right-fold). Folds can express things that cannot be accommodated by either filter or map, but that somehow involve traversing all the items in a list. Here's an example of a length function, expressed as a fold:
(define (foldl func init lst)
(if (null? lst) init
(foldl func (func (car lst) init) (cdr lst))))
(define (length lst)
(foldl (lambda (elem count)
(+ count 1))
0 lst))
The benefit here is that the length function does not have to worry about traversing the list: that is handled by the fold. It only needs to worry about what to do at each iteration (which, here, is simply adding 1 to count, which starts out as 0).
In this case, the length is the same whether we traverse from the left or the right, and in Scheme, traversing from the left is more space-efficient, so we prefer that. But for implementing map and filter, a right-fold is necessary (otherwise the elements come out reversed---try substituting the foldr with foldl in the below functions and you'll see):
(define (foldr func init lst)
(if (null? lst) init
(func (car lst) (foldr func init (cdr lst)))))
(define (map func lst)
(foldr (lambda (elem result)
(cons (func elem) result))
'() lst))
(define (filter pred lst)
(foldr (lambda (elem result)
(if (pred elem)
(cons elem result)
result))
'() lst))
My task is to write function in lisp which finds maximum of a list given as argument of the function, by using recursion.I've tried but i have some errors.I'm new in Lisp and i am using cusp plugin for eclipse.This is my code:
(defun maximum (l)
(if (eq((length l) 1)) (car l)
(if (> (car l) (max(cdr l)))
(car l)
(max (cdr l))
))
If this isn't a homework question, you should prefer something like this:
(defun maximum (list)
(loop for element in list maximizing element))
Or even:
(defun maximum (list)
(reduce #'max list))
(Both behave differently for empty lists, though)
If you really need a recursive solution, you should try to make your function more efficient, and/or tail recursive. Take a look at Diego's and Vatine's answers for a much more idiomatic and efficient recursive implementation.
Now, about your code:
It's pretty wrong on the "Lisp side", even though you seem to have an idea as to how to solve the problem at hand. I doubt that you spent much time trying to learn lisp fundamentals. The parentheses are messed up -- There is a closing parenthesis missing, and in ((length l) 1), you should note that the first element in an evaluated list will be used as an operator. Also, you do not really recurse, because you're trying to call max (not maximize). Finally, don't use #'eq for numeric comparison. Also, your code will be much more readable (not only for others), if you format and indent it in the conventional way.
You really should consider spending some time with a basic Lisp tutorial, since your question clearly shows lack of understanding even the most basic things about Lisp, like the evaluation rules.
I see no answers truly recursive and I've written one just to practice Common-Lisp (currently learning). The previous answer that included a recursive version was inefficient, as it calls twice maximum recursively. You can write something like this:
(defun my-max (lst)
(labels ((rec-max (lst actual-max)
(if (null lst)
actual-max
(let ((new-max (if (> (car lst) actual-max) (car lst) actual-max)))
(rec-max (cdr lst) new-max)))))
(when lst (rec-max (cdr lst) (car lst)))))
This is (tail) recursive and O(n).
I think your problem lies in the fact that you refer to max instead of maximum, which is the actual function name.
This code behaves correctly:
(defun maximum (l)
(if (= (length l) 1)
(car l)
(if (> (car l) (maximum (cdr l)))
(car l)
(maximum (cdr l)))))
As written, that code implies some interesting inefficiencies (it doesn't have them, because you're calling cl:max instead of recursively calling your own function).
Function calls in Common Lisp are typically not memoized, so if you're calling your maximum on a long list, you'll end up with exponential run-time.
There are a few things you can do, to improve the performance.
The first thing is to carry the maximum with you, down the recursion, relying on having it returned to you.
The second is to never use the idiom (= (length list) 1). That is O(n) in list-length, but equivalent to (null (cdr list)) in the case of true lists and the latter is O(1).
The third is to use local variables. In Common Lisp, they're typically introduced by let. If you'd done something like:
(let ((tail-max (maximum (cdr l))))
(if (> (car l) tail-max)
(car l)
tail-max))
You would've had instantly gone from exponential to, I believe, quadratic. If in combination had done the (null (cdr l)) thing, you would've dropped to O(n). If you also had carried the max-seen-so-far down the list, you would have dropped to O(n) time and O(1) space.
if i need to do the max code in iteration not recursive how the code will be ??
i first did an array
(do do-array (d l)
setf b (make-array (length d))
(do (((i=0)(temp d))
((> i (- l 1)) (return))
(setf (aref b i) (car temp))
(setq i (+ i 1))
(setq temp (cdr temp))))
I made this, hope it helps and it is recursive.
(defun compara ( n lista)
(if(endp lista)
n
(if(< n (first lista))
nil
(compara n (rest lista)))))
(defun max_lista(lista)
(if (endp lista)
nil
(if(compara (first lista) (rest lista))
(first lista)
(max_lista(rest lista)))))
A proper tail-recursive solution
(defun maximum (lst)
(if (null lst)
nil
(maximum-aux (car lst) (cdr lst))))
(defun maximum-aux (m lst)
(cond
((null lst) m)
((>= m (car lst)) (maximum-aux m (cdr lst)))
(t (maximum-aux (car lst) (cdr lst)))))
(defun maxx (l)
(if (null l)
0
(if(> (car l) (maxx(cdr l)))
(car l)
(maxx (cdr l)))))