alternative to drop=FALSE or changing default behavior [duplicate] - r

This question already has an answer here:
Generally disable dimension dropping for matrices?
(1 answer)
Closed 9 years ago.
The default behavior in R for reducing a 2 dimensional matrix to 1 row is to actually drop a dimension. This can be "fixed" by putting drop=FALSE at the end of the matrix search.
Is there a way to make this the default? I have a pretty long program and just realized I'm going to have to add this in about 100 places if there isn't...
I searched ?options, ?'[', and ?matrix to no avail.

You can redefine `[` like this:
old <- `[`
`[` <- function(...) { old(..., drop=FALSE) }
This modification should be local to the interactive scope and therefore not affect routines which rely on the other behaviour. No guarantees, though. And be prepared that code of this form will be likely to confuse readers of your code, who are used to the other semantics.
Perhaps you can make this change local to a specific function, instead of all your code?
One alternative would be writing your own class for the matrix objects, for which you can provide your own subset operator implementation. This makes sense if you construct matrices in a very limited number of places, but might be a problem if there is a large number of code paths constructing these matrices.

Related

Access columns of an R data.table as a matrix, by reference

I recall there is a special (undocumented?) form that allows accessing selected columns of a data.table by reference as a matrix (in so doing allocating no memory) but for the life of me I can't find my note on the subject. Something analogous to setDF, but yielding a matrix, not a data.frame. I understand this might come with certain dangers, and would like to be reminded of how to do this, and what the dangers are.
It is not possible, because matrix has different layout in memory than list/data.frame/data.table, and we don't have any mapping that allows that.

Understanding the logic of R code [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 5 years ago.
Improve this question
I am learning R through tutorials, but I have difficulties in "how to read" R code, which in turn makes it difficult to write R code. For example:
dir.create(file.path("testdir2","testdir3"), recursive = TRUE)
vs
dup.names <- as.character(data.combined[which(duplicated(as.character(data.combined$name))), "name"])
While I know what these lines of code do, I cannot read or interpret the logic of each line of code. Whether I read left to right or right to left. What strategies should I use when reading/writing R code?
dup.names <- as.character(data.combined[which(duplicated(as.character(data.combined$name))), "name"])
Don't let lines of code like this ruin writing R code for you
I'm going to be honest here. The code is bad. And for many reasons.
Not a lot of people can read a line like this and intuitively know what the output is.
The point is you should not write lines of code that you don't understand. This is not Excel, you do not have but 1 single line to fit everything within. You have a whole deliciously large script, an empty canvas. Use that space to break your code into smaller bits that make a beautiful mosaic piece of art! Let's dive in~
Dissecting the code: Data Frames
Reading a line of code is like looking at a face for familiar features. You can read left to right, middle to out, whatever -- as long as you can lock onto something that is familiar.
Okay you see data.combined. You know (hope) it has rows and columns... because it's data!
You spot a $ in the code and you know it has to be a data.frame. This is because only lists and data.frames (which are really just lists) allow you to subset columns using $ followed by the column name. Subset-by the way- just means looking at a portion of the overall. In R, subsetting for data.frames and matrices can be done using single brackets[, within which you will see [row, column]. Thus if we type data.combined[1,2], it would give you the value in row 1 of column 2.
Now, if you knew that the name of column 2 was name you can use data.combined[1,"name"] to get the same output as data.combined$name[1]. Look back at that code:
dup.names <- as.character(data.combined[which(duplicated(as.character(data.combined$name))), "name"])
Okay, so now we see our eyes should be locked on data.combined[SOMETHING IS IN HERE?!]) and slowly be picking out data.combined[ ?ROW? , Oh the "name" column]. Cool.
Finding those ROW values!
which(duplicated(as.character(data.combined$name)))
Anytime you see the which function, it is just giving you locations. An example: For the logical vector a = c(1,2,2,1), which(a == 1) would give you 1 and 4, the location of 1s in a.
Now duplicated is simple too. duplicated(a) (which is just duplicated(c(1,2,2,1))) will give you back FALSE FALSE TRUE TRUE. If we ran which(duplicated(a)) it would return 3 and 4. Now here is a secret you will learn. If you have TRUES and FALSES, you don't need to use the which function! So maybe which was unnessary here. And also as.character... since duplicated works on numbers and strings.
What You Should Be Writing
Who am I to tell you how to write code? But here's my take.
Don't mix up ways of subsetting: use EITHER data.frame[,column] or data.frame$column...
The code could have been written a little bit more legibly as:
dupes <- duplicated(data.combined$name)
dupe.names <- data.combines$name[dupes]
or equally:
dupes <- duplicated(data.combined[,"name"])
dupe.names <- data.combined[dupes,"name"]
I know this was lengthy but I hope it helps.
An easier way to read any code is to break up their components.
dup.names <-
as.character(
data.combined[which(
duplicated(
as.character(
data.combined$name
)
)
), "name"]
)
For each of the functions - those parts with rounded brackets following them e.g. as.character() you can learn more about what they do and how they work by typing ?as.character in the console
Square brackets [] are use to subset data frames, which are stored in your environment (the box to the upper right if you're using R within RStudio contains your values as well as any defined functions). In this case, you can tell that data.combined is the name that has been given to such a data frame in this example (type ?data.frame to find out more about data frames).
"Unwrapping" long lines of code can be daunting at first. Start by breaking it down into parenthesis , brackets, and commas. Parenthesis directly tacked onto a word indicate a function, and any commas that lie within them (unless they are part of another nested function or bracket) separate arguments which contain parameters that modify the way the function behaves. We can reduce your 2nd line to an outer function as.character and its arguments:
dup.names <- as.character(argument_1)
Just from this, we know that dup.names will be assigned a value with the data type "character" off of a single argument.
Two functions in the first line, file.path() and dir.create(), contain a comma to denote two arguments. Arguments can either be a single value or specified with an equal sign. In this case, the output of file.path happens to perform as argument #1 of dir.create().
file.path(argument_1,argument_2)
dir.create(argument_1,argument_2)
Brackets are a way of subsetting data frames, with the general notation of dataframe_object[row,column]. Within your second line is a dataframe object, data.combined. You know it's a dataframe object because of the brackets directly tacked onto it, and knowing this allows you to that any functions internal to this are contributing to subsetting this data frame.
data.combined[row, column]
So from there, we can see that the internal functions within this bracket will produce an output that specifies the rows of data.combined that will contribute to the subset, and that only columns with name "name" will be selected.
Use the help function to start to unpack these lines by discovering what each function does, and what it's arguments are.

Accessing index inside *apply

I have two containers, conty and contx. The values of both are tied to each other. conty[1] relates to contx[1] etc. while using apply on contx I want to access the index inside an apply structure so I can put values from corresponding element in conty into contz depending upon the index of x.
lapply(contx, function(x) {
if (x==1) append(contz,conty[xindex])
})
I could easily do this in a for loop but everybody insists that using the apply is better. And I tried to look for examples but the only thing I could find was mostly stuff for generating maps where it wasn't entirely clear how I could adapt to my problem.
There are a few issues here.
"everybody insists that using the apply is better". Sorry, but they're wrong; it's not necessarily better. See the old-school Burns Inferno ("If you are using R and you think you’re in hell, this is a map for you"), chapter 4 ("Overvectorization"):
A common reflex is to use a function in the apply family. This is not vectorization, it is loop-hiding. The apply function has a for loop in its definition. The lapply function buries the loop, but execution times tend to be roughly equal to an explicit for loop ... Base your decision of using an apply function on Uwe’s Maxim (page 20). The issue is of human time rather than silicon chip time. Human time can be wasted by taking longer to write the code, and (often much more importantly) by taking more time to understand subsequently what it does.
However, what you are doing that's bad is growing an object (also covered in the Inferno). Assuming that in your example contz started as an empty list, this should work (is my example reflective of your use case?)
x <- c(1,2,3,1)
conty <- list("a","b","c","d")
contz <- conty[which(x==1)]
Alternatively, if you want to use both the value and the index in your function, you can write a two-variable function f(val,index) and then use Map(f,my_list,seq_along(my_list))

Use values from 2 matrices to index a third in R

I'm optimizing a more complex code, but got stuck with this problem.
a<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
m<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
f<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
g<-array(NA,c(10,10))
I need to use the values in a & m to index f and assign the value from f to g
i.e. g[1,1]<-f[a[1,1],m[1,1]] except for all the indexes, and as optimally/fast as possible
I could obviously make a for loop to do this for me but that seems rather dumb and slow. It seems like I should be able to us something in the apply family, but I've had no luck with figuring out how to do that. I do need to keep the data structured as it is here so that I can use matrix operations in different parts of my code. I've been searching for an answer to this but haven't found anything particularly helpful yet.
g[] <- f[cbind(c(a), c(m))]
This takes advantage of the fact that matrices can be addressed as vectors and using a matrix as the index.

Why is using assign bad?

This post (Lazy evaluation in R – is assign affected?) covers some common ground but I am not sure it answers my question.
I stopped using assign when I discovered the apply family quite a while back, albeit, purely for reasons of elegance in situations such as this:
names.foo <- letters
values.foo <- LETTERS
for (i in 1:length(names.foo))
assign(names.foo[i], paste("This is: ", values.foo[i]))
which can be replaced by:
foo <- lapply(X=values.foo, FUN=function (k) paste("This is :", k))
names(foo) <- names.foo
This is also the reason this (http://cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-I-turn-a-string-into-a-variable_003f) R-faq says this should be avoided.
Now, I know that assign is generally frowned upon. But are there other reasons I don't know? I suspect it may mess with the scoping or lazy evaluation but I am not sure? Example code that demonstrates such problems will be great.
Actually those two operations are quite different. The first gives you 26 different objects while the second gives you only one. The second object will be a lot easier to use in analyses. So I guess I would say you have already demonstrated the major downside of assign, namely the necessity of then needing always to use get for corralling or gathering up all the similarly named individual objects that are now "loose" in the global environment. Try imagining how you would serially do anything with those 26 separate objects. A simple lapply(foo, func) will suffice for the second strategy.
That FAQ citation really only says that using assignment and then assigning names is easier, but did not imply it was "bad". I happen to read it as "less functional" since you are not actually returning a value that gets assigned. The effect looks to be a side-effect (and in this case the assign strategy results in 26 separate side-effects). The use of assign seems to be adopted by people that are coming from languages that have global variables as a way of avoiding picking up the "True R Way", i.e. functional programming with data-objects. They really should be learning to use lists rather than littering their workspace with individually-named items.
There is another assignment paradigm that can be used:
foo <- setNames( paste0(letters,1:26), LETTERS)
That creates a named atomic vector rather than a named list, but the access to values in the vector is still done with names given to [.
As the source of fortune(236) I thought I would add a couple examples (also see fortune(174)).
First, a quiz. Consider the following code:
x <- 1
y <- some.function.that.uses.assign(rnorm(100))
After running the above 2 lines of code, what is the value of x?
The assign function is used to commit "Action at a distance" (see http://en.wikipedia.org/wiki/Action_at_a_distance_(computer_programming) or google for it). This is often the source of hard to find bugs.
I think the biggest problem with assign is that it tends to lead people down paths of thinking that take them away from better options. A simple example is the 2 sets of code in the question. The lapply solution is more elegant and should be promoted, but the mere fact that people learn about the assign function leads people to the loop option. Then they decide that they need to do the same operation on each object created in the loop (which would be just another simple lapply or sapply if the elegant solution were used) and resort to an even more complicated loop involving both get and apply along with ugly calls to paste. Then those enamored with assign try to do something like:
curname <- paste('myvector[', i, ']')
assign(curname, i)
And that does not do quite what they expected which leads to either complaining about R (which is as fair as complaining that my next door neighbor's house is too far away because I chose to walk the long way around the block) or even worse, delve into using eval and parse to get their constructed string to "work" (which then leads to fortune(106) and fortune(181)).
I'd like to point out that assign is meant to be used with environments.
From that point of view, the "bad" thing in the example above is using a not quite appropriate data structure (the base environment instead of a list or data.frame, vector, ...).
Side note: also for environments, the $ and $<- operators work, so in many cases the explicit assign and get isn't necessary there, neither.

Resources