Determine the points in the boundary of a given region in 2D - math

What is a good way to determine the points in the boundary of a given region in 2D?
Suppose that you are given a nested list with lists of two coordinates, e.g.
{ {x1,y1}, {x2,y2}, {x3,y3} }
Of course the actual nested list would have a lot more points than 3, which are associated to a given region in the plane. The nested list, for example, could determine a disk in the plane. Then, the output should be a nested list corresponding to a circle.
I don't want any image recognition stuff applied to a possible plot. I would like operations on the nested list.

This answer is based on #andand comment. The credit is all his.
If I have a nested list called "region", with lists of the 2d coordinates, I would get the "convex hull" of it writing
Needs["ComputationalGeometry`"]
regionhull = ConvexHull[ region ]
But "ConvexHull" gives us the indices of the lists within the nested list, in counterclockwise order, corresponding to the convex boundary of the region. Thus, an adittional step is needed, to make the needed output:
regionboundary = region[[ regionhull ]]
But still, this answer is incomplete. It seems to me that a "concave hull" algorithm would be the more general solution. Would anyone know anything about the concave hull in Mathematica? I may post an additional question for that.
Below, I show a figure to understand the concave and convex hull algorithms extracted from
https://gis.stackexchange.com/questions/1200/concave-hull-definition-algorithms-and-practical-solutions
A tutorial for the "Computational Geometry Package" is found at
http://reference.wolfram.com/mathematica/ComputationalGeometry/tutorial/ComputationalGeometry.html
** Addendum **
The package "alphahull" can solve the problem of finding the boundary of a concave region. Its description is found here:
http://cran.r-project.org/web/packages/alphahull/vignettes/alphahull.pdf

Sounds like you want some kind of interpolation technique. http://en.wikipedia.org/wiki/Interpolation

Related

Cluster adjacent Vornoi polygons of same category

We have a set of points, each with (x,y) coordinates and a category C. We have built the Voronoi diagram based on these points and would now like to "cluster" adjacent polygons when they are of a particular category. Is there a ready-made algorithm / R package for doing this ?
If not, our current thinking is to go back to the Delaunay triangulation and brute-force our way to the solution : consider each vertix V, find the vertix v of each edge going into V and see if they are the same category, if so aggregate the polygons.
Is there a better way to do that ? Is there an R package that could do that ? If not, which R package implementing Delaunay would have the best result data-structure to do this ?
Note: I wouldn't call this cluster analysis. If you stick to this keyword, you will not find anything useful to you. What you apparently want to do is merge adjacent Voronoi cells, but that's about it.
Your Voronoi cell / Delaunay triangulation algorithm should give you information of all the edges. What you probably want to do is iterate over all edges, and when both cells have the same category, merge them.
Trivial code; and heavily application dependant (what is "same category"?), so you probably won't find a "libary" for it.
You can use a convex hull on the points and remove all points inside a same category. Then repeat the voronoi diagram. BTW. I know nothing about R.

Suggested package/function to compute the vertices of a 3-simplex (tetrahedron)

I'd like to draw the 3-simplex which encloses some random points in 3D. So for example:
pts <- rnorm(30)
pts <- matrix(pts, ncol = 3)
With these points, I'd like to compute the vertices of the 3-simplex (irregular tetrahedron) that just encloses these points. Can someone suggest a package/function that will do this? All manner of searching for simplex-related material is dominated by answers that relate to using simplices for other purposes, of which there are many. I just want to compute one and draw it. Seems simple, but I don't seem to know the relevant keywords for what I need.
If nobody can find a suitable package for this, you'll have to settle for doing it yourself, which isn't so difficult if you don't require it to be the absolute tightest fit. See this question over at mathexchange.
The simplest approach presented in this question seems to me to be translating the origin so that all points lie in the positive orthant (i.e, all point dimensions are positive) and then projecting the points to lie within the simplex denoted by each unit vector. To get this simplex in your original coordinate system you can take the inverse projection and inverse translation of the points in this simplex.
Another approach suggested there is to find the enveloping sphere (which you can for instance use Ritter's algorithm for), and then find an enveloping simplex of the sphere, which might be an easier task depending what you are most comfortable with.
I think you're looking for convhulln in the geometry package, but I'm no expert, so maybe that isn't quite what you are looking for.

quality analysis of fitted pyramid

sorry for posting this in programing site, but there might be many programming people who are professional in geometry, 3d geometry... so allow this.
I have been given best fitted planes with the original point data. I want to model a pyramid for this data as the data represent a pyramid. My approach of this modeling is
Finding the intersection lines (e.g. AB, CD,..etc) for each pair of adjacent plane
Then, finding the pyramid top (T) by intersecting the previously found lines as these lines don’t pass through a single point
Intersecting the available side planes with a desired horizontal plane to get the basement
In figure – black triangles are original best fitted triangles; red
and blue triangles are model triangles
I want to show that the points are well fitted for the pyramid model
than that it fitted for the given best fitted planes. (Assume original
planes are updated as shown)
Actually step 2 is done using weighted least square process. Each intersection line is assigned with a weight. Weight is proportional to the angle between normal vectors of corresponding planes. in this step, I tried to find the point which is closest to all the intersection lines i.e. point T. according to the weights, line positions might change with respect to the influence of high weight line. That mean, original planes could change little bit. So I want to show that these new positions of planes are well fitted for the original point data than original planes.
Any idea to show this? I am thinking to use RMSE and show before and after RMSE. But again I think I should use weighted RMSE as all the planes refereeing to the point T are influenced so that I should cope this as a global case rather than looking individual planes….. But I can’t figure out a way to show this. Or maybe I should use some other measure…
So, I am confused and no idea to show this.. Please help me…
If you are given the best-fit planes, why not intersect the three of them to get a single unambiguous T, then determine the lines AT, BT, and CT?
This is not a rhetorical question, by the way. Your actual question seems to be for reassurance that your procedure yields "well-fitted" results, but you have not explained or described what kind of fit you're looking for!
Unfortunately, without this information, your question cannot be answered as asked. If you describe your goals, we may be able to help you achieve them -- or, if you have not yet articulated them for yourself, that exercise may be enough to let you answer your own question...
That said, I will mention that the only difference between the planes you started with and the planes your procedure ends up with should be due to floating point error. This is because, geometrically speaking, all three lines should intersect at the same point as the planes that generated them.

How to convert a set of 2D points (multipoint) to a polygon?

I have a set of dense, irregurarly distributed 2D points ("scattered all over the place"). They can be stored in a single MULTIPOINT WKT object including "holes" or - if needed - as delaunay triangles.
How would you convert this into a polygon, i.e. one outer boundary and zero, one or more inner boundaries?
P.S. It's not the largest enclosing polygon I'm looking for (that would be solved by ConvexHull or ConcaveHull). I'm looking for a true polygon with the same shape as the scattered point set (including inner boundary).
Your question reads to me like “find a polygon which has a given set of points as vertices.” Is that interpretation correct?
If so, you can do the following: Create the convex hull of your points. Remove those points from consideration, and take the convex hull of the remaining points. Proceed in this fashion until there are no more remaining points. The intermediate result will be a sequence of convex polygones nested inside one another. You can turn them into a single polygon by connecting each subsequent pair of polygons. You connect two polygons by removing an edge from each, and connecting the resulting endpoints ”the other way round”. Some care has to be taken that these connections don't overlap anything else, but that shouldn't be too hard.
Note that there are many possible results fulfilling the specification as I read it. If you need a specific one, you'll have to give details on the criteria for that choice.
Use QHull: http://www.qhull.org/
It is the de facto standard for this sort of thing.

A simple algorithm for polygon intersection

I'm looking for a very simple algorithm for computing the polygon intersection/clipping.
That is, given polygons P, Q, I wish to find polygon T which is contained in P and in Q, and I wish T to be maximal among all possible polygons.
I don't mind the run time (I have a few very small polygons), I can also afford getting an approximation of the polygons' intersection (that is, a polygon with less points, but which is still contained in the polygons' intersection).
But it is really important for me that the algorithm will be simple (cheaper testing) and preferably short (less code).
edit: please note, I wish to obtain a polygon which represent the intersection. I don't need only a boolean answer to the question of whether the two polygons intersect.
I understand the original poster was looking for a simple solution, but unfortunately there really is no simple solution.
Nevertheless, I've recently created an open-source freeware clipping library (written in Delphi, C++ and C#) which clips all kinds of polygons (including self-intersecting ones). This library is pretty simple to use: https://github.com/AngusJohnson/Clipper2
You could use a Polygon Clipping algorithm to find the intersection between two polygons. However these tend to be complicated algorithms when all of the edge cases are taken into account.
One implementation of polygon clipping that you can use your favorite search engine to look for is Weiler-Atherton. wikipedia article on Weiler-Atherton
Alan Murta has a complete implementation of a polygon clipper GPC.
Edit:
Another approach is to first divide each polygon into a set of triangles, which are easier to deal with. The Two-Ears Theorem by Gary H. Meisters does the trick. This page at McGill does a good job of explaining triangle subdivision.
If you use C++, and don't want to create the algorithm yourself, you can use Boost.Geometry. It uses an adapted version of the Weiler-Atherton algorithm mentioned above.
You have not given us your representation of a polygon. So I am choosing (more like suggesting) one for you :)
Represent each polygon as one big convex polygon, and a list of smaller convex polygons which need to be 'subtracted' from that big convex polygon.
Now given two polygons in that representation, you can compute the intersection as:
Compute intersection of the big convex polygons to form the big polygon of the intersection. Then 'subtract' the intersections of all the smaller ones of both to get a list of subracted polygons.
You get a new polygon following the same representation.
Since convex polygon intersection is easy, this intersection finding should be easy too.
This seems like it should work, but I haven't given it more deeper thought as regards to correctness/time/space complexity.
Here's a simple-and-stupid approach: on input, discretize your polygons into a bitmap. To intersect, AND the bitmaps together. To produce output polygons, trace out the jaggy borders of the bitmap and smooth the jaggies using a polygon-approximation algorithm. (I don't remember if that link gives the most suitable algorithms, it's just the first Google hit. You might check out one of the tools out there to convert bitmap images to vector representations. Maybe you could call on them without reimplementing the algorithm?)
The most complex part would be tracing out the borders, I think.
Back in the early 90s I faced something like this problem at work, by the way. I muffed it: I came up with a (completely different) algorithm that would work on real-number coordinates, but seemed to run into a completely unfixable plethora of degenerate cases in the face of the realities of floating-point (and noisy input). Perhaps with the help of the internet I'd have done better!
I have no very simple solution, but here are the main steps for the real algorithm:
Do a custom double linked list for the polygon vertices and
edges. Using std::list won't do because you must swap next and
previous pointers/offsets yourself for a special operation on the
nodes. This is the only way to have simple code, and this will give
good performance.
Find the intersection points by comparing each pair of edges. Note
that comparing each pair of edge will give O(N²) time, but improving
the algorithm to O(N·logN) will be easy afterwards. For some pair of
edges (say a→b and c→d), the intersection point is found by using
the parameter (from 0 to 1) on edge a→b, which is given by
tₐ=d₀/(d₀-d₁), where d₀ is (c-a)×(b-a) and d₁ is (d-a)×(b-a). × is
the 2D cross product such as p×q=pₓ·qᵧ-pᵧ·qₓ. After having found tₐ,
finding the intersection point is using it as a linear interpolation
parameter on segment a→b: P=a+tₐ(b-a)
Split each edge adding vertices (and nodes in your linked list)
where the segments intersect.
Then you must cross the nodes at the intersection points. This is
the operation for which you needed to do a custom double linked
list. You must swap some pair of next pointers (and update the
previous pointers accordingly).
Then you have the raw result of the polygon intersection resolving algorithm. Normally, you will want to select some region according to the winding number of each region. Search for polygon winding number for an explanation on this.
If you want to make a O(N·logN) algorithm out of this O(N²) one, you must do exactly the same thing except that you do it inside of a line sweep algorithm. Look for Bentley Ottman algorithm. The inner algorithm will be the same, with the only difference that you will have a reduced number of edges to compare, inside of the loop.
The way I worked about the same problem
breaking the polygon into line segments
find intersecting line using IntervalTrees or LineSweepAlgo
finding a closed path using GrahamScanAlgo to find a closed path with adjacent vertices
Cross Reference 3. with DinicAlgo to Dissolve them
note: my scenario was different given the polygons had a common vertice. But Hope this can help
If you do not care about predictable run time you could try by first splitting your polygons into unions of convex polygons and then pairwise computing the intersection between the sub-polygons.
This would give you a collection of convex polygons such that their union is exactly the intersection of your starting polygons.
If the polygons are not aligned then they have to be aligned. I would do this by finding the centre of the polygon (average in X, average in Y) then incrementally rotating the polygon by matrix transformation, project the points to one of the axes and use the angle of minimum stdev to align the shapes (you could also use principal components). For finding the intersection, a simple algorithm would be define a grid of points. For each point maintain a count of points inside one polygon, or the other polygon or both (union) (there are simple & fast algorithms for this eg. http://wiki.unity3d.com/index.php?title=PolyContainsPoint). Count the points polygon1 & polygon2, divide by the amount of points in polygon1 or Polygon2 and you have a rough (depending on the grid sampling) estimate of proportion of polygons overlap. The intersection area would be given by the points corresponding to an AND operation.
eg.
function get_polygon_intersection($arr, $user_array)
{
$maxx = -999; // choose sensible limits for your application
$maxy = -999;
$minx = 999;
$miny = 999;
$intersection_count = 0;
$not_intersected = 0;
$sampling = 20;
// find min, max values of polygon (min/max variables passed as reference)
get_array_extent($arr, $maxx, $maxy, $minx, $miny);
get_array_extent($user_array, $maxx, $maxy, $minx, $miny);
$inc_x = $maxx-$minx/$sampling;
$inc_y = $maxy-$miny/$sampling;
// see if x,y is within poly1 and poly2 and count
for($i=$minx; $i<=$maxx; $i+= $inc_x)
{
for($j=$miny; $j<=$maxy; $j+= $inc_y)
{
$in_arr = pt_in_poly_array($arr, $i, $j);
$in_user_arr = pt_in_poly_array($user_array, $i, $j);
if($in_arr && $in_user_arr)
{
$intersection_count++;
}
else
{
$not_intersected++;
}
}
}
// return score as percentage intersection
return 100.0 * $intersection_count/($not_intersected+$intersection_count);
}
This can be a huge approximation depending on your polygons, but here's one :
Compute the center of mass for each
polygon.
Compute the min or max or average
distance from each point of the
polygon to the center of mass.
If C1C2 (where C1/2 is the center of the first/second polygon) >= D1 + D2 (where D1/2 is the distance you computed for first/second polygon) then the two polygons "intersect".
Though, this should be very efficient as any transformation to the polygon applies in the very same way to the center of mass and the center-node distances can be computed only once.

Resources