Creating a numerical variable order - r

I have a set of data with 3 columns: index column (with no name), colour, colour of seed, and germination time.
How do I create a numerical variable called 'order' with values 1 to 22 (the number of data sets)?

I don't know if I get you right, but simplest way would be:
> order <- c(1:22)
> order
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No, if you run:
class(order)
you will get:
[1] "integer"
but you can easily get every element of object order (especially in a loop)
for(i in 1:length(order)){
print(order[i])
}

Related

Show only even numbers from a data set

I am trying to extract only the even numbers from the "cars" data set.
I know I need to create a new function.
I have come this far:
Is.even = function(x) x %% 2 == 0
When I enter in:
Is.even(cars[1])
It gives me back a logical response. I want to only display the actual even numbers in integer form and hide the odd numbers.
What am I doing wrong?
Apart from #neilfws' suggestion, if you pass your values as a vector you can also use Filter
Filter(Is.even, cars[, 1])
#[1] 4 4 8 10 10 10 12 12 12 12 14 14 14 14 16 16 18 18 18 18 20 20 20 20 20 22 24 24 24 24

What type returns table in R?

I wrote this lines of code below.
I want to get the most frequent value in matrix:
matrix7 <- matrix(sample(1:36, 100, replace = TRUE), nrow = 1)
t <- table(matrix7)
print(t)
a <- which.max(table(matrix7))
print(unlist(a))
it prints this:
> matrix7 <- matrix(sample(1:36, 100, replace = TRUE), nrow = 1)
> t <- table(matrix7)
> print(t)
matrix7
1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 34 35 36
4 5 1 5 2 5 1 3 1 4 2 2 2 5 5 1 3 7 2 3 2 3 2 1 4 4 2 2 2 5 2 5 3
> a <- which.max(table(matrix7))
> print(unlist(a))
19
18
>
What type is my t variable and a variable,
and how can I get the most frequent value from matrix?
To know the "type" of variable use:
class(t)
class(a)
But notice you are already setting your matrix7 as table here: t <- table(matrix7) while your variable a is an integer.
To get the most common element on your variable (t in your case):
sort(table(as.vector(t)))
In general, if you want to know the "type" (more properly called the class) of an object, use the function class:
> class(t)
[1] "table"
There are a few ways you can find the most frequent value. Given that you have already calculated the which.max, you can take the corresponding name of t:
> as.numeric(names(t)[a])
[1] 5 ## I have a different random number seed to you :)
Note that you can't just take t[a] since that might return an integer code (factors are integers underneath, and the integer might not be what you expect).
In your example, the object a is an integer vector of length one. The "data" is 18, and it has the "name" 19. Hence another and perhaps simpler way to get the most frequent value is to take names(a).
You can either use class() to get the the class attribute of an R object or typeof() to get the type or storage mode.
Class and type of a are 'integer', the class of t is 'table' and the type is 'integer'.
Note that a is a named integer, this is why 2 values are printed. If you use names(a) it will only return the value (as a character) of a.
If you use which.max(tabulate(matrix7)) it will return the value without the need to change it further.
which.max(tabulate(matrix7))
[1] 16
(Side node: since no seed is in your code the result differs, you can set it using set.seed(x) where x is an integer).

Why does the vector gets expanded in the loop

My requirement is to select a window of size 5 from the 'data' variable and use it in further processing. (please see following code). However, the length of 'sub_data' increases for each iteration. What am I doing wrong?
next_one<-function(data) {
for(k in 10:length(data)) {
sub_data<-data[k-5:k];
print(sub_data);
}
}
I call the function as follows:
dat=read.csv("file name");
attach(dat);
#assume there is a column called 'Value'
next_one(Value);
Add parentheses:
(k-5):k
Compare
20-5:20
#[1] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
with
(20-5):20
#[1] 15 16 17 18 19 20
And read help("Syntax") to learn about operator precedence.

How to reorder a column in a data frame to be the last column

I have a data frame where columns are constantly being added to it. I also have a total column that I would like to stay at the end. I think I must have skipped over some really basic command somewhere but cannot seem to find the answer anywhere. Anyway, here is some sample data:
x=1:10
y=21:30
z=data.frame(x,y)
z$total=z$x+z$y
z$w=11:20
z$total=z$x+z$y+z$w
When I type z I get this:
x y total w
1 1 21 33 11
2 2 22 36 12
3 3 23 39 13
4 4 24 42 14
5 5 25 45 15
6 6 26 48 16
7 7 27 51 17
8 8 28 54 18
9 9 29 57 19
10 10 30 60 20
Note how the total column comes before the w, and obviously any subsequent columns. Is there a way I can force it to be the last column? I am guessing that I would have to use ncol(z) somehow. Or maybe not.
You can reorder your columns as follows:
z <- z[,c('x','y','w','total')]
To do this programmatically, after you're done adding your columns, you can retrieve their names like so:
nms <- colnames(z)
Then you can grab the ones that aren't 'total' like so:
nms[nms!='total']
Combined with the above:
z <- z[, c(nms[nms!='total'],'total')]
You have a logic issue here. Whenever you add to a data.frame, it grows to the right.
Easiest fix: keep total a vector until you are done, and only then append it. It will then be the rightmost column.
(For critical applications, you would of course determine your width k beforehand, allocate k+1 columns and just index the last one for totals.)

Reverting to Factor Codes R

Let's say I have a data.frame that looks like this:
df.test <- data.frame(1:26, 1:26)
colnames(df.test) <- c("a","b")
and I apply a factor:
df.test$a <- factor(df.test$a, levels=c(1:26), labels=letters)
Now, how I would like to convert it back the integer codes:
as.numeric(df.test[1])## replies with an error code.
But this works:
as.numeric(df.test$a)
Why is that?
Actually Joshua's link are not applicable here because the task is not coverting from a factor with levels that have numeric interpretation. Your original effort that produced an error was almost correct. It was missing only a comma before the 1:
df.test <- data.frame(1:26, 1:26)
colnames(df.test) <- c("a","b")
df.test$a <- factor(df.test$a, levels=c(1:26), labels=letters)
as.numeric(df.test[,1])
# [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# [19] 19 20 21 22 23 24 25 26
Or you could have used "[["
> as.numeric(df.test[[1]])
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26
as.numeric will convert a factor to numeric:
as.numeric(df.test$a)
Accessing a column by name gives you a factor vector, which can be converted to numeric.
However, a data frame is a list (of columns), and when you use the single bracket operator and a single number on a list, you get a list of length one. The same applies for data frames, so df.test[1] gets you column one as a new data frame, which cannot be coerced by as.numeric(). I did not know this!
> str(df.test$a)
Factor w/ 26 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ...
> str(df.test[1])
'data.frame': 26 obs. of 1 variable:
$ a: Factor w/ 26 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10 ...
To respond to your edit: Keep in mind that a factor has two parts: 1) the labels, and 2) the underlying integer codes. The two answers I linked to in my comment were to convert the labels to numeric. If you just want to get the internal codes, use as.integer(df.test$a) as demonstrated in the examples section of ?factor. aL3xa answered your question about why as.numeric(df.test[1]) throws an error.

Resources