R - Import & Merge Multiple Excel Files And Add Filesource Variable - r

I have used R for various things over the past year but due to the number of packages and functions available, I am still sadly a beginner. I believe R would allow me to do what I want to do with minimal code, but I am struggling.
What I want to do:
I have roughly a hundred different excel files containing data on students. Each excel file represents a different school but contains the same variables. I need to:
Import the data into R from Excel
Add a variable to each file containing the filename
Merge all of the data (add observations/rows - do not need to match on variables)
I will need to do this for multiple sets of data, so I am trying to make this as simple and easy to replicate as possible.
What the Data Look Like:
Row 1 Title
Row 2 StudentID Var1 Var2 Var3 Var4 Var5
Row 3 11234 1 9/8/2011 343 159-167 32
Row 4 11235 2 9/16/2011 112 152-160 12
Row 5 11236 1 9/8/2011 325 164-171 44
Row 1 is meaningless and Row 2 contains the variable names. The files have different numbers of rows.
What I have so far:
At first I simply tried to import data from excel. Using the XLSX package, this works nicely:
dat <- read.xlsx2("FILENAME.xlsx", sheetIndex=1,
sheetName=NULL, startRow=2,
endRow=NULL, as.data.frame=TRUE,
header=TRUE)
Next, I focused on figuring out how to merge the files (also thought this is where I should add the filename variable to the datafiles). This is where I got stuck.
setwd("FILE_PATH_TO_EXCEL_DIRECTORY")
filenames <- list.files(pattern=".xls")
do.call("rbind", lapply(filenames, read.xlsx2, sheetIndex=1, colIndex=6, header=TRUE, startrow=2, FILENAMEVAR=filenames));
I set my directory, make a list of all the excel file names in the folder, and then try to merge them in one statement using the a variable for the filenames.
When I do this I get the following error:
Error in data.frame(res, ...) :
arguments imply differing number of rows: 616, 1, 5
I know there is a problem with my application of lapply - the startrow is not being recognized as an option and the FILENAMEVAR is trying to merge the list of 5 sample filenames as opposed to adding a column containing the filename.
What next?
If anyone can refer me to a useful resource or function, critique what I have so far, or point me in a new direction, it would be GREATLY appreciated!

I'll post my comment (with bdemerast picking up on the typo). The solution was untested as xlsx will not run happily on my machine
You need to pass a single FILENAMEVAR to read.xlsx2.
lapply(filenames, function(x) read.xlsx2(file=x, sheetIndex=1, colIndex=6, header=TRUE, startRow=2, FILENAMEVAR=x))

Related

Loop over a large number of CSV files with the same statements in R?

I'm having a lot of trouble reading/writing to CSV files. Say I have over 300 CSV's in a folder, each being a matrix of values.
If I wanted to find out a characteristic of each individual CSV file such as which rows had an exact number of 3's, and write the result to another CSV fil for each test, how would I go about iterating this over 300 different CSV files?
For example, say I have this code I am running for each file:
values_4 <- read.csv(file = 'values_04.csv', header=FALSE) // read CSV in as it's own DF
values_4$howMany3s <- apply(values_04, 1, function(x) length(which(x==3))) // compute number of 3's
values_4$exactly4 <- apply(values_04[50], 1, function(x) length(which(x==4))) // show 1/0 on each column that has exactly four 3's
values_4 // print new matrix
I am then continuously copy and pasting this code and changing the "4" to a 5, 6, etc and noting the values. This seems wildly inefficient to me but I'm not experienced enough at R to know exactly what my options are. Should I look at adding all 300 CSV files to a single list and somehow looping through them?
Appreciate any help!
Here's one way you can read all the files and proceess them. Untested code as you haven't given us anything to work on.
# Get a list of CSV files. Use the path argument to point to a folder
# other than the current working directory
files <- list.files(pattern=".+\\.csv")
# For each file, work your magic
# lapply runs the function defined in the second argument on each
# value of the first argument
everything <- lapply(
files,
function(f) {
values <- read.csv(f, header=FALSE)
apply(values, 1, function(x) length(which(x==3)))
}
)
# And returns the results in a list. Each element consists of
# the results from one function call.
# Make sure you can access the elements of the list by filename
names(everything) <- files
# The return value is a list. Access all of it with
everything
# Or a single element with
everything[["values04.csv"]]

read_csv (readr, R) populates entire column with NA if there are NA in the fist 1000 + x observations in a simple and clean csv (parsing failure)

I was just going through a tremendous headache caused by read_csv messing up my data by substituting content with NA while reading simple and clean csv files.
I’m iterating over multiple large csv files that add up to millions of observations. Some columns contain quite some NA for some variables.
When reading a csv that contains NA in a certain column for the first 1000 + x observations, read_csv populates the entire column with NA and thus, the data is lost for further operations.
The warning message “Warning: x parsing failure” is shown, but as I’m reading multiple files I cannot check this file by file. Still, I would not know an automated fix for the parsing problem indicated also with problems(x)
Using read.csv instead of read_csv does not cause the problem, but it is slow and I run into encoding issues (using different encodings requires too much memory for large files).
An option to overcome this bug is to add a first observation (first row) to your data that contains something for each column, but still I need to read the file first somehow.
See a simplified example below:
##create a dtafrane
df <- data.frame( id = numeric(), string = character(),
stringsAsFactors=FALSE)
##poluate columns
df[1:1500,1] <- seq(1:1500)
df[1500,2] <- "something"
# variable string contains the first value in obs. 1500
df[1500,]
## check the numbers of NA in variable string
sum(is.na(df$string)) # 1499
##write the df
write_csv(df, "df.csv")
##read the df with read_csv and read.csv
df_readr <- read_csv('df.csv')
df_read_standard <- read.csv('df.csv')
##check the number of NA in variable string
sum(is.na(df_readr$string)) #1500
sum(is.na(df_read_standard$string)) #1499
## the read_csv files is all NA for variable string
problems(df_readr) ##What should that tell me? How to fix it?
Thanks to MrFlick for giving the answering comment on my questions:
The whole reason read_csv can be faster than read.csv is because it can make assumptions about your data. It looks at the first 1000 rows to guess the column types (via guess_max) but if there is no data in a column it can't guess what's in that column. Since you seem to know what's supposed to be in the columns, you should use the col_types= parameter to tell read_csv what to expect rather than making it guess. See the ?readr::cols help page to see how to tell read_csv what it needs to know.
Also guess_max = Inf overcomes the problem, but the speed advantage of read_csv seems to be lost.

Importing multiple csv files into independent data frames with specific conditions (merging column,skipping etc)

I am new to R and I have run into a problem. I have a folder with 50 csv files, each representing a city. I want to import the each csv files into R studio as independent data frames to eventually plot all 50 cities in one time series plot.
There are four things I want to do to each csv file, but in the end, have it automated that these four actions are done to each of the 50 csv files.
Skip the first 25 row of the csv file
Combine the Date and Time column for each csv file
Remove the rows where the values in the cells in column 3 is empty
Change the name of column 3 from "ug/m3" to "CO"
After skipping, the first row will be the header
I used the code below on one csv file to see if it would work on one csv.Everything work except for city[,3][!(is.na(city[,3]))].
city1 <- read.csv("path",
skip = 25)
city1$rtime <- strptime(paste(city1$Date, city1$Time), "%m/%d/%Y %H:%M")
colnames(city1)[3] <- "CO"
city[,3][!(is.na(city[,3]))] ## side note: help with this would be appreciated, I was if something goes before the comma especially.
I am not sure how to combine everything in an efficient manner in a function.
I would appreciate suggestions on an efficient manner to perform the 4 actions ( in a function statement maybe) to each csv file while importing them to R.
Use this function for each csv you want to read
read_combine <- function(yourfile){
file <- read.csv(yourfile,skip=25)
file$rtime <- strptime(paste(file $Date, file $Time), "%m/%d/%Y %H:%M")
colnames(file)[3] <- "CO"
file$CO[!is.na(file$CO)]
}
yourfile must be "path"

Multiple Excel Spreadsheets Import to R

I have an Excel file with hundreds of spreadsheets.
I have read a few postings on stackoverflow where it is answered how to import them into R using read.xl packages and so on...
But I need to do something extra for this file. Each spreadsheet has 2 rows of header on the top and first row in the header has 5 digits of number that I need to extract and insert it to the table.
For example, header has 11111 ABC Corp. and its dataset below.
It should look like this:
11111 ABC Corp.
Product# | Description | Quantity Order | Price | Unit Price
Here, I want to import the data as below:
ID# | Product # | Description | Quantity Order | Price | Unit Price
11111 | 2813A | Whatever | 100
11111 | 2222B
11111 | 7721CD
So as you see above, the five digits of number should be copied to the first column of the table for each spreadsheet. Each spreadsheet has different five digit numbers to be copied to its table.
I was thinking if I have a way to extract the first five digits, then I can probably do this by using loop.
So 1. Extract the first five digits.
2. Design a loop by which I can insert into first column and import in to R.
What are the good functions I can use?
Thank you.
R is a great tool for so, so, so many things! In this specific case, I would manipulate the data in Excel, and then import one large merged range into R. I always believe in using the right tool for the specific task you are tacking. So, start by downloading and installing the AddIn from here.
https://www.rondebruin.nl/win/addins/rdbmerge.htm
So, merge all worksheets (hundreds) into one massive worksheet. Set First Cell to A2 till last cell on worksheet. Once all those hundreds of sheets are merged into one sheet, save that as a CSV, and import it into R.
mydata <- read.table("c:/mydata.csv", header=TRUE, sep=",", row.names="id")
The key to iteration is solve it for one and then apply to all. Once you've figured out how to do it for one sheet the rest is easy.
Here is my guess based on your description of your files.
library(readxl) # to read excel files
library(readr) # for type_convert
fname <- "test.xlsx"
## get sheet names
sheets <- excel_sheets(fname)
## function to process a single sheet
processSheet <- function(sheet, file) {
all <- read_excel(file, sheet) # read all data
id <- na.omit(names(all)) # extract the ID
names(all) <- unlist(all[1, ]) # make the first row the names
all <- all [-1, ] # get rid of the first row
data.frame(ID = id, # add id column
type_convert(all) # convert to appropriate column types
)
}
## apply the function to each sheet, collecting the results into a
## data.frame
test.data <- do.call(rbind,
lapply(sheets,
processSheet,
file = fname))
You could of course use something other than readxl to read the Excel files. Something that can read a specific range would make the re-arranging of the data easier. The reason I went with readxl is that I've found it "just work", whereas others depend on Java or Perl and tend to break more often in my experience.

How to convert rows

I have uploaded a data set which is called as "Obtained Dataset", it usually has 16 rows of numeric and character variables, some other files of similar nature have less than 16 characters, each variable is the header of the data which starts from the 17th row and onwards "in this specific file".
Obtained dataset & Required Dataset
For the data that starts 1st column is the x-axis, 2nd column is y-axis and 3rd column is depth (which are standard for all the files in the database) 4th column is GR 1 LIN, 5th column is CAL 1 LIN so and soforth as given in the first 16 rows of the data.
Now i want an R code which can convert it into the format shown in the required data set, also if a different data set has say less than 16 lines of names say GR 1 LIN and RHOB 1 LIN are missing then i want it to still create a column with NA entries till 1:nrow.
Currently i have managed to export this file to excel and manually clean the data and rename the columns correspondingly and then save it as csv and then read.csv("filename") etc but it is simply not possible to do this for 400 files.
Any advice how to proceed will be of great help.
I have noticed that you have probably posted this question again, and in a different format. This is a public forum, and people are happy to help. However, it's your job to simplify life of others, and you are requested to put in some effort. Here is some advice on that.
Having said that, here is some code I have written to help you out.
Step0: Creating your first data set:
sink("test.txt") # This will `sink` all the output to the file "test.txt"
# Lets start with some dummy data
cat("1\n")
cat("DOO\n")
cat(c(sample(letters,10),"\n"))
cat(c(sample(letters,10),"\n"))
cat(c(sample(letters,10),"\n"))
cat(c(sample(letters,10),"\n"))
# Now a 10 x 16 dummy data matrix:
cat(paste(apply(matrix(sample(160),10),1,paste,collapse = "\t"),collapse = "\n"))
cat("\n")
sink() # This will stop `sink`ing.
I have created some dummy data in first 6 lines, and followed by a 10 x 16 data matrix.
Note: In principle you should have provided something like this, or a copy of your dataset. This would help other people help you.
Step1: Now we need to read the file, and we want to skip the first 6 rows with undesired info:
(temp <- read.table(file="test.txt", sep ="\t", skip = 6))
Step2: Data clean up:
We need a vector with names of the 16 columns in our data:
namesVec <- letters[1:16]
Now we assign these names to our data.frame:
names(temp) <- namesVec
temp
Looks good!
Step3: Save the data:
write.table(temp,file="test-clean.txt",row.names = FALSE,sep = "\t",quote = FALSE)
Check if the solution is working. If it is working, than move to next step, otherwise make necessary changes.
Step4: Automating:
First we need to create a list of all the 400 files.
The easiest way (to explain also) is copy the 400 files in a directory, and then set that as working directory (using setwd).
Now first we'll create a vector with all file names:
fileNameList <- dir()
Once this is done, we'll need to function to repeat step 1 through 3:
convertFiles <- function(fileName) {
temp <- read.table(file=fileName, sep ="\t", skip = 6)
names(temp) <- namesVec
write.table(temp,file=paste("clean","test.txt",sep="-"),row.names = FALSE,sep = "\t",quote = FALSE)
}
Now we simply need to apply this function on all the files we have:
sapply(fileNameList,convertFiles)
Hope this helps!

Resources