I have a non-linear survival model which I have coded using the mgcv package. I can produce a regular plot, but I would like to be able to do code a ggplot2 instead. How do I go about this?
Here is my code:
df <- structure(list(SurvYear =c(3L, 2L, 3L, 6L, 8L, 3L, 5L, 2L, 9L,
8L, 1L, 7L, 1L, 4L, 6L, 8L, 2L, 5L, 1L, 1L, 7L, 1L, 5L, 3L, 2L,
1L, 9L, 1L, 5L, 2L, 2L, 1L, 2L, 3L, 4L, 8L, 7L, 2L, 2L, 6L, 9L,
7L, 3L, 9L, 6L, 8L, 2L, 8L, 2L, 1L, 1L, 6L, 5L, 3L, 3L, 7L, 2L,
4L, 5L, 2L, 3L, 7L, 4L, 1L, 2L, 2L, 3L, 5L, 1L, 9L, 2L, 2L, 3L,
9L, 6L, 2L, 2L, 4L, 3L, 1L, 9L, 7L, 3L, 1L, 2L, 1L, 6L, 3L, 1L,
5L, 6L, 5L, 6L, 4L, 2L, 1L, 3L, 1L, 1L, 3L, 4L, 3L, 8L, 9L, 7L,
6L, 3L, 5L, 2L, 7L, 9L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 9L, 1L,
4L, 8L, 1L, 8L, 1L, 1L, 8L, 5L, 2L, 9L, 4L, 8L, 4L, 9L, 2L, 2L,
3L, 2L, 9L, 3L, 2L, 1L, 3L, 2L, 1L, 9L, 9L, 2L, 1L, 1L, 1L, 2L,
9L, 1L, 5L, 1L, 6L, 9L, 3L, 2L, 2L, 5L, 7L, 4L, 2L, 7L, 2L, 4L,
5L, 3L, 3L, 9L, 2L, 6L, 1L, 3L, 4L, 5L, 9L, 8L, 1L, 2L, 8L, 2L,
9L, 1L, 7L, 3L, 3L, 1L, 6L, 3L, 4L, 9L, 1L, 3L, 4L, 4L, 2L, 7L,
2L, 3L, 1L, 1L, 7L, 2L, 1L, 1L, 2L, 1L, 9L, 1L, 2L, 9L, 1L, 1L,
2L, 3L, 7L, 3L, 1L, 1L, 2L, 5L, 4L, 6L, 7L, 1L, 9L, 2L, 1L, 8L,
1L, 2L, 1L, 4L, 2L, 3L, 3L, 9L, 9L, 9L, 4L, 1L, 1L, 4L, 9L, 3L,
1L, 1L, 3L, 3L, 4L, 1L, 1L, 1L, 1L, 6L, 9L, 1L, 1L, 8L, 1L, 3L,
3L, 8L, 3L, 5L, 1L, 2L, 1L, 2L, 4L, 3L, 1L, 6L, 1L, 4L, 8L, 1L,
3L, 2L, 2L, 3L, 6L, 2L, 1L, 1L, 1L, 9L, 3L, 1L, 7L, 3L, 9L, 1L,
9L, 5L, 4L), Gender = c(1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L,
1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L,
0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L,
0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L,
1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L,
1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L,
0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L,
1L, 1L), Age = c(63L, 66L, 34L, 43L, 63L, 21L, 24L, 44L, 52L,
59L, 27L, 32L, 30L, 20L, 56L, 55L, 35L, 26L, 53L, 43L, 39L, 19L,
34L, 28L, 19L, 24L, 50L, 22L, 58L, 24L, 50L, 25L, 37L, 30L, 51L,
69L, 23L, 49L, 22L, 46L, 58L, 31L, 23L, 53L, 59L, 25L, 38L, 44L,
34L, 49L, 19L, 39L, 24L, 51L, 29L, 27L, 48L, 77L, 22L, 43L, 59L,
49L, 60L, 51L, 49L, 47L, 50L, 44L, 41L, 44L, 50L, 42L, 46L, 54L,
35L, 21L, 26L, 26L, 40L, 21L, 48L, 49L, 20L, 20L, 32L, 37L, 22L,
36L, 46L, 28L, 39L, 35L, 51L, 39L, 49L, 57L, 46L, 18L, 52L, 47L,
27L, 32L, 23L, 43L, 42L, 57L, 22L, 40L, 19L, 58L, 71L, 55L, 42L,
20L, 51L, 21L, 20L, 61L, 36L, 54L, 19L, 35L, 38L, 41L, 34L, 22L,
41L, 42L, 56L, 50L, 53L, 53L, 48L, 22L, 59L, 27L, 28L, 32L, 37L,
68L, 24L, 26L, 61L, 21L, 20L, 20L, 50L, 62L, 61L, 29L, 18L, 40L,
67L, 43L, 25L, 43L, 22L, 56L, 47L, 41L, 40L, 43L, 27L, 37L, 61L,
35L, 23L, 54L, 38L, 38L, 39L, 45L, 49L, 63L, 49L, 44L, 44L, 23L,
37L, 58L, 61L, 25L, 18L, 59L, 25L, 51L, 40L, 27L, 42L, 22L, 38L,
22L, 45L, 33L, 32L, 36L, 53L, 52L, 19L, 45L, 53L, 27L, 65L, 25L,
53L, 57L, 29L, 23L, 62L, 36L, 56L, 59L, 41L, 61L, 44L, 24L, 21L,
38L, 29L, 55L, 33L, 18L, 21L, 19L, 65L, 24L, 59L, 34L, 25L, 45L,
48L, 18L, 41L, 61L, 32L, 37L, 21L, 20L, 57L, 25L, 65L, 50L, 61L,
32L, 27L, 19L, 50L, 63L, 19L, 45L, 20L, 36L, 20L, 19L, 53L, 39L,
50L, 20L, 24L, 57L, 28L, 21L, 39L, 49L, 21L, 20L, 39L, 20L, 44L,
19L, 39L, 53L, 29L, 60L, 43L, 21L, 23L, 30L, 42L, 42L, 51L, 35L,
50L, 51L, 56L, 52L, 22L, 36L, 56L, 28L, 57L, 20L, 47L, 48L, 65L,
71L, 21L, 70L, 23L, 63L), Highest_Educationmx = c(4L, 5L, 3L,
2L, 3L, 2L, 3L, 1L, 3L, 1L, 7L, 3L, 2L, 3L, 3L, 2L, 6L, 2L, 3L,
6L, 3L, 2L, 2L, 7L, 2L, 1L, 2L, 3L, 6L, 3L, 5L, 3L, 5L, 6L, 2L,
1L, 5L, 2L, 5L, 1L, 1L, 3L, 2L, 3L, 1L, 7L, 5L, 4L, 7L, 3L, 1L,
1L, 6L, 3L, 3L, 2L, 4L, 6L, 5L, 4L, 2L, 6L, 1L, 3L, 4L, 2L, 1L,
5L, 5L, 3L, 1L, 5L, 3L, 3L, 1L, 4L, 2L, 3L, 5L, 3L, 1L, 4L, 2L,
1L, 2L, 7L, 2L, 5L, 3L, 2L, 6L, 1L, 1L, 3L, 4L, 1L, 5L, 1L, 3L,
4L, 2L, 7L, 2L, 4L, 4L, 7L, 4L, 6L, 3L, 1L, 2L, 1L, 5L, 5L, 1L,
5L, 2L, 7L, 3L, 4L, 2L, 4L, 2L, 4L, 2L, 2L, 4L, 1L, 2L, 1L, 2L,
6L, 1L, 2L, 5L, 2L, 2L, 5L, 1L, 6L, 5L, 2L, 1L, 2L, 1L, 1L, 3L,
2L, 4L, 3L, 2L, 3L, 1L, 5L, 5L, 7L, 1L, 3L, 3L, 2L, 1L, 3L, 4L,
5L, 1L, 1L, 3L, 3L, 3L, 5L, 3L, 6L, 4L, 3L, 1L, 3L, 5L, 7L, 1L,
3L, 4L, 5L, 3L, 3L, 1L, 1L, 1L, 7L, 3L, 1L, 4L, 3L, 3L, 5L, 1L,
4L, 5L, 4L, 2L, 5L, 3L, 1L, 1L, 5L, 4L, 7L, 5L, 2L, 2L, 5L, 3L,
1L, 1L, 2L, 3L, 5L, 3L, 7L, 5L, 1L, 5L, 3L, 1L, 1L, 1L, 1L, 7L,
5L, 7L, 3L, 1L, 5L, 7L, 6L, 3L, 7L, 2L, 2L, 3L, 1L, 2L, 1L, 5L,
5L, 2L, 4L, 1L, 1L, 2L, 1L, 4L, 7L, 3L, 2L, 5L, 3L, 2L, 4L, 2L,
1L, 7L, 5L, 2L, 2L, 2L, 3L, 4L, 1L, 2L, 5L, 2L, 3L, 3L, 1L, 3L,
2L, 3L, 5L, 1L, 3L, 1L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 1L, 3L, 3L,
1L, 3L, 6L, 3L, 4L, 3L, 3L, 5L, 3L), Censor = c(0L, 1L, 1L, 0L,
0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L,
1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L,
1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L,
0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L,
1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L,
1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L,
1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L)), class = "data.frame",
row.names = c(NA, -300L))
Here is the script:
library(mgcv)
library(ggplot2)
#Run the model
Model1 <- gam(SurvYear~
(Gender)+
s(Age, k=50)+
s(Highest_Educationmx, k=7),
weights=Censor, data=df, gamma=1.5, family=cox.ph())
summary(Model1)
#Build a perspective chart
vis.gam(Model1, view=c("Age","Highest_Educationmx"),
plot.type="persp", color="gray", se=-1, theta=45, phi=25,
xlab="Age", ylab= "Highest Education",
ticktype="detailed", zlim=c(-5.00, 2.00))
#Plot individual predictors using plot command from mgcv
plot(Model1, all.terms=T, rug=T, residuals=F, se=T, shade=T, seWithMean=T)
#Plot individual predictors using ggplot instead of plot command from mgcv
#UNSURE HOW DO TO THIS
I'm biased (I wrote it) but you can use the gratia package for this.
You can use the draw() function as a replacement for plot.gam(), and if you want total control, just use evaluate_smooth() to produce a tidy representation of the smooth which is then easily plotted using ggplot2.
Here is the script based on the suggestion from Gavin Simpson above:
library(gratia)
#Plot individual predictors using ggplot instead of the plot command from mgcv
sm <- gratia::evaluate_smooth(Model1, "Age")
ggplot(sm, aes(x=Age, y=est)) + geom_line(size=1.0) +
geom_ribbon(aes(ymax=est+se, ymin=est-se), alpha=0.20) +
coord_cartesian(xlim=c(20.00, 75.00), ylim=c(-2.00, 1.00)) +
scale_x_continuous(breaks=seq(20.00, 75.00, 5.00)) +
scale_y_continuous(breaks=seq(-2.00, 1.00, 1.00)) +
labs(title="Age") +
xlab("Age") +
ylab("Linear Risk Score") +
theme(plot.title=element_text(size=10)) +
geom_hline(yintercept=0, linetype="dashed", size=0.5) +
geom_vline(xintercept=mean(df$Age), linetype="dashed", size=0.5)
I have
> head(p)
studie sex n_fjernet n_sygdom
1 Group1 Male 22 1
2 Group1 Male 61 2
3 Group1 Female 50 1
4 Group1 Female 47 3
5 Group1 Female 30 1
6 Group1 Female 60 0
and
> head(u)
studie alder sex n_fjernet n_sygdom n_otte
1 Group4 59 Female 26 0 0
2 Group4 85 Male 7 1 1
3 Group4 74 Female 17 9 6
4 Group4 78 Male 13 0 0
5 Group4 41 Male 11 0 0
6 Group4 62 Male 12 0 0
I want to add u$n_otte to p for all cases of p$studie==u$studieandp$sex==u$sexandp$n_fjernet==u$n_fjernetandp$n_sygdom==u$n_sygdom, which is 895 cases in u out of the total of 1485 cases in p. All cases in p that does not match and gets u$n_otte left_joined(), should just be listed as NA
So I wrote
left_join(p, u %>% distinct(studie, sex, n_fjernet, n_sygdom, .keep_all = TRUE), by = "n_otte")
Which returned an error
Error: `by` can't contain join column `n_otte` which is missing from LHS
I tried different left_join() approaches but all returned an error. What am I doing wrong?
u <- structure(list(studie = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Group4",
"Group3"), class = "factor"), sex = structure(c(1L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L,
2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L
), .Label = c("Female", "Male"), class = "factor"), n_fjernet = c(26L,
7L, 17L, 13L, 11L, 12L, 8L, 2L, 14L, 8L, 35L, 23L, 5L, 20L, 11L,
5L, 30L, 12L, 23L, 37L, 13L, 26L, 9L, 9L, 9L, 15L, 39L, 13L,
5L, 9L, 19L, 32L, 18L, 16L, 45L, 35L, 25L, 20L, 27L, 34L, 11L,
44L, 20L, 48L, 92L, 6L, 29L, 12L, 26L, 37L, 30L, 54L, 32L, 39L,
15L, 21L, 22L, 34L, 39L, 30L, 36L, 19L, 26L, 43L, 26L, 42L, 18L,
15L, 32L, 29L, 36L, 28L, 38L, 35L, 66L, 11L, 49L, 32L, 61L, 49L,
36L, 51L, 42L, 13L, 10L, 36L, 45L, 49L, 52L, 21L, 42L, 29L, 38L,
28L, 37L, 47L, 33L, 50L, 19L, 45L, 23L, 29L, 31L, 59L, 60L, 32L,
32L, 30L, 50L, 29L, 32L, 42L, 24L, 22L, 47L, 24L, 22L, 8L, 38L,
25L, 34L, 45L, 50L, 51L, 28L, 8L, 21L, 17L, 30L, 36L, 20L, 56L,
23L, 77L, 23L, 76L, 58L, 35L, 33L, 52L, 34L, 17L, 66L, 38L, 58L,
16L, 58L, 44L, 22L, 42L, 17L, 33L, 9L, 31L, 15L, 46L, 31L, 32L,
25L, 17L, 31L, 35L, 29L, 18L, 69L, 28L, 25L, 35L, 19L, 18L, 15L,
51L, 41L, 55L, 35L, 19L, 45L, 24L, 39L, 57L, 45L, 37L, 30L, 33L,
34L, 47L, 21L, 16L, 22L, 26L, 36L, 32L, 17L, 28L, 32L, 35L, 37L,
30L, 32L, 29L, 41L, 18L, 26L, 32L, 30L, 17L, 35L, 17L, 27L, 27L,
10L, 30L, 50L, 28L, 22L, 13L, 32L, 35L, 51L, 44L, 16L, 17L, 43L,
27L, 21L, 34L, 13L, 18L, 37L, 20L, 8L, 19L, 43L, 24L, 48L, 15L,
11L, 22L, 20L, 19L, 20L, 23L, 12L, 31L, 28L, 34L, 25L, 22L, 38L,
28L, 26L, 30L, 45L, 50L, 39L, 22L, 41L, 14L, 60L, 35L, 10L, 29L,
24L, 25L, 31L, 32L, 33L, 10L, 16L, 10L, 10L, 32L, 30L, 34L, 31L,
24L, 15L, 20L, 20L, 31L, 33L, 15L, 27L, 19L, 40L, 17L, 48L, 35L,
25L, 25L, 22L, 19L, 24L, 20L, 30L, 13L, 28L, 19L, 7L, 29L, 18L,
41L, 11L, 42L, 35L, 24L, 16L, 29L, 39L, 28L, 32L, 16L, 31L, 30L,
27L, 17L, 28L, 29L, 12L, 25L, 30L, 14L, 19L, 13L, 32L, 16L, 12L,
24L, 10L, 34L, 49L, 17L, 11L, 37L, 38L, 36L, 18L, 42L, 14L, 33L,
41L, 21L, 10L, 16L, 16L, 14L, 32L, 25L, 22L, 19L, 28L, 16L, 24L,
28L, 29L, 34L, 27L, 23L, 33L, 23L, 57L, 30L, 16L, 13L, 20L, 42L,
14L, 18L, 31L, 19L, 22L, 27L, 11L, 12L, 7L, 25L, 29L, 35L, 21L,
64L, 39L, 51L, 21L, 16L, 36L, 22L, 15L, 29L, 38L, 20L, 23L, 5L,
33L, 15L, 20L, 52L, 31L, 16L, 10L, 12L, 47L, 23L, 28L, 27L, 18L,
24L, 34L, 45L, 24L, 43L, 28L, 34L, 20L, 26L, 17L, 41L, 25L, 38L,
35L, 25L, 21L, 24L, 21L, 24L, 14L, 40L, 19L, 11L, 21L, 38L, 43L,
23L, 28L, 17L, 78L, 12L, 27L, 16L, 24L, 16L, 21L, 43L, 25L, 50L,
44L, 30L, 33L, 31L, 20L, 47L, 47L, 34L, 22L, 31L, 28L, 51L, 23L,
45L, 30L, 34L, 32L, 39L, 41L, 25L, 15L, 19L, 14L, 41L, 40L, 49L,
27L, 35L, 26L, 22L, 59L, 10L, 29L, 38L, 64L, 16L, 36L, 56L, 31L,
50L, 23L, 27L, 49L, 30L, 28L, 25L, 38L, 37L, 25L, 30L, 23L, 18L,
31L, 48L, 47L, 49L), n_sygdom = c(0L, 1L, 9L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 4L, 0L, 0L, 21L, 0L, 2L,
0L, 0L, 0L, 2L, 1L, 1L, 0L, 0L, 2L, 2L, 0L, 0L, 7L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 11L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 7L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 5L, 6L, 0L, 1L,
0L, 1L, 0L, 0L, 1L, 0L, 3L, 0L, 0L, 19L, 2L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 4L, 0L, 0L, 0L, 0L, 0L, 3L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 5L, 0L, 2L, 6L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L,
0L, 16L, 1L, 6L, 0L, 2L, 5L, 0L, 0L, 0L, 0L, 3L, 0L, 2L, 3L,
4L, 0L, 1L, 0L, 0L, 0L, 4L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 4L, 0L, 9L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 0L, 2L,
2L, 3L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 5L, 1L, 5L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L,
2L, 5L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 8L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 2L, 0L, 14L, 3L, 0L, 0L, 0L, 0L, 4L, 1L, 0L, 0L, 2L, 0L,
1L, 0L, 0L, 1L, 0L, 2L, 0L, 5L, 0L, 0L, 0L, 1L, 0L, 0L, 4L, 0L,
1L, 1L, 3L, 0L, 2L, 0L, 0L, 0L, 2L, 7L, 18L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 3L, 1L, 0L, 0L, 6L, 1L, 0L, 0L, 7L, 2L,
0L, 0L, 0L, 1L, 0L, 8L, 0L, 0L, 3L, 3L, 1L, 3L, 2L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 3L, 0L, 4L, 0L, 0L,
1L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 9L, 0L, 0L,
6L, 0L, 1L, 0L, 1L, 1L, 2L, 0L, 5L, 4L, 0L, 4L, 0L, 0L, 0L, 2L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 8L, 0L, 0L, 3L,
0L, 3L, 0L, 0L, 0L, 0L, 0L, 5L, 0L, 3L, 1L, 7L, 3L, 0L, 0L, 2L,
0L, 1L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 3L, 1L, 0L, 3L, 0L, 0L, 4L,
0L, 1L, 5L, 4L, 16L, 0L, 1L, 5L, 1L, 0L, 1L, 0L, 0L, 0L, 3L,
0L, 4L, 2L, 4L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), n_otte = c(0L, 1L, 6L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 3L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 6L, 0L, 3L, 0L, 0L, 0L,
2L, 6L, 6L, 0L, 0L, 4L, 6L, 0L, 0L, 6L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 4L, 3L, 0L, 1L, 0L, 1L, 0L, 0L,
1L, 0L, 6L, 0L, 0L, 6L, 6L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 3L, 0L,
0L, 0L, 0L, 0L, 4L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 6L,
0L, 3L, 4L, 0L, 0L, 6L, 0L, 6L, 0L, 1L, 0L, 0L, 6L, 6L, 6L, 0L,
3L, 6L, 0L, 0L, 0L, 0L, 4L, 0L, 3L, 3L, 6L, 0L, 1L, 0L, 0L, 0L,
3L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 4L, 0L, 3L,
0L, 0L, 0L, 1L, 0L, 4L, 0L, 0L, 0L, 4L, 6L, 4L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 4L, 1L, 6L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 6L, 4L, 6L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 3L, 0L, 6L, 3L, 0L,
0L, 0L, 0L, 6L, 1L, 0L, 0L, 6L, 0L, 1L, 0L, 0L, 1L, 6L, 6L, 0L,
3L, 6L, 0L, 0L, 1L, 0L, 0L, 3L, 0L, 1L, 1L, 3L, 6L, 3L, 0L, 0L,
0L, 3L, 3L, 6L, 6L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 3L, 6L,
0L, 0L, 6L, 1L, 0L, 0L, 6L, 2L, 0L, 0L, 0L, 1L, 0L, 6L, 0L, 0L,
6L, 4L, 1L, 3L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 6L,
0L, 0L, 0L, 6L, 0L, 4L, 0L, 0L, 4L, 0L, 6L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 4L, 0L, 0L, 4L, 0L, 0L, 4L, 0L, 6L, 0L, 1L, 1L, 6L, 0L,
6L, 6L, 0L, 3L, 0L, 0L, 0L, 3L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 6L, 0L, 0L, 3L, 0L, 6L, 0L, 0L, 0L, 0L, 6L, 3L,
0L, 6L, 1L, 6L, 6L, 0L, 0L, 3L, 0L, 1L, 0L, 0L, 0L, 3L, 0L, 6L,
0L, 6L, 1L, 0L, 6L, 0L, 0L, 6L, 0L, 1L, 3L, 6L, 6L, 0L, 1L, 6L,
1L, 0L, 1L, 0L, 0L, 0L, 6L, 0L, 4L, 6L, 3L, 6L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(NA,
500L), class = "data.frame")
And
p <- structure(list(studie = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Group2",
"Group3", "Group4"), class = "factor"), sex = structure(c(2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L,
1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L,
1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 2L, 1L), .Label = c("Female", "Male"), class = "factor"),
n_fjernet = c(18L, 26L, 24L, 20L, 41L, 31L, 13L, 41L, 25L,
16L, 18L, 26L, 35L, 36L, 22L, 20L, 16L, 10L, 19L, 46L, 6L,
49L, 70L, 46L, 55L, 25L, 22L, 37L, 28L, 52L, 27L, 15L, 11L,
7L, 24L, 11L, 56L, 47L, 27L, 14L, 16L, 21L, 43L, 25L, 50L,
44L, 30L, 33L, 31L, 20L, 47L, 47L, 34L, 22L, 31L, 28L, 51L,
23L, 45L, 30L, 34L, 32L, 39L, 41L, 25L, 15L, 19L, 14L, 41L,
40L, 49L, 27L, 35L, 26L, 22L, 59L, 10L, 29L, 38L, 64L, 16L,
36L, 56L, 31L, 50L, 23L, 27L, 49L, 30L, 28L, 25L, 38L, 37L,
25L, 30L, 23L, 18L, 31L, 48L, 47L, 49L, 38L, 19L, 3L, 69L,
26L, 30L, 57L, 52L, 40L, 32L, 17L, 42L, 32L, 15L, 63L, 25L,
29L, 45L, 49L, 27L, 21L, 43L, 31L, 13L, 22L, 28L, 45L, 24L,
17L, 49L, 34L, 61L, 51L, 51L, 29L, 32L, 23L, 9L, 14L, 28L,
35L, 43L, 46L, 32L, 52L, 22L, 34L, 66L, 27L, 59L, 31L, 27L,
34L, 38L, 69L, 50L, 63L, 48L, 37L, 41L, 31L, 48L, 35L, 36L,
30L, 38L, 39L, 22L, 97L, 19L, 29L, 72L, 25L, 113L, 17L, 62L,
29L, 44L, 24L, 20L, 48L, 66L, 30L, 24L, 19L, 42L, 27L, 87L,
24L, 19L, 45L, 30L, 34L, 57L, 51L, 28L, 26L, 40L, 102L, 23L,
54L, 32L, 18L, 22L, 4L, 40L, 56L, 3L, 34L, 46L, 29L, 14L,
33L, 52L, 15L, 33L, 44L, 25L, 35L, 33L, 45L, 50L, 38L, 33L,
24L, 45L, 61L, 17L, 38L, 18L, 65L, 61L, 19L, 19L, 25L, 68L,
39L, 21L, 18L, 39L, 36L, 46L, 35L, 68L, 18L, 14L, 18L, 28L,
55L, 30L, 40L, 57L, 52L, 91L, 60L, 84L, 92L, 26L, 65L, 39L,
73L, 36L, 33L, 51L, 133L, 66L, 62L, 38L, 53L, 70L, 33L, 20L,
52L, 45L, 64L, 106L, 70L, 24L, 23L, 44L, 35L, 31L, 52L, 46L,
33L, 15L, 42L, 35L, 33L, 19L, 54L, 64L, 37L, 27L, 51L, 27L,
52L, 61L, 38L, 31L, 46L, 86L, 44L, 58L, 32L, 27L, 13L, 12L,
38L, 72L, 20L, 59L, 37L, 27L, 23L, 59L, 36L, 28L, 38L, 26L,
64L, 34L, 38L, 21L, 34L, 44L, 33L, 55L, 38L, 51L, 49L, 45L,
44L, 40L, 33L, 19L, 18L, 45L, 52L, 63L, 16L, 24L, 50L, 59L,
98L, 60L, 63L, 49L, 59L, 35L, 35L, 38L, 56L, 78L, 68L, 56L,
42L, 80L, 58L, 39L, 50L, 17L, 37L, 40L, 22L, 51L, 32L, 34L,
17L, 33L, 18L, 33L, 25L, 4L, 57L, 47L, 27L, 33L, 20L, 42L,
29L, 41L, 22L, 17L, 9L, 17L, 39L, 78L, 19L, 37L, 50L, 34L,
14L, 29L, 49L, 25L, 33L, 54L, 47L, 12L, 18L, 30L, 22L, 33L,
52L, 80L, 20L, 33L, 61L, 34L, 36L, 67L, 35L, 36L, 24L, 12L,
47L, 29L, 38L, 30L, 25L, 19L, 28L, 37L, 72L, 31L, 39L, 36L,
30L, 60L, 45L, 29L, 56L, 44L, 124L, 42L, 39L, 26L, 74L, 25L,
25L, 124L, 32L, 28L, 32L, 9L, 21L, 25L, 24L, 40L, 14L, 42L,
49L, 21L, 28L, 44L, 38L, 24L, 28L, 34L, 26L, 46L, 36L, 31L,
39L, 22L, 80L, 37L, 54L, 19L, 14L, 55L, 42L, 45L, 23L, 31L,
21L, 33L, 25L, 18L, 46L, 22L, 54L, 32L, 28L, 28L, 31L, 28L,
29L, 41L, 34L, 24L, 41L, 32L, 39L, 14L, 32L, 46L, 32L), n_sygdom = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5L, 3L, 8L, 5L, 8L,
3L, 6L, 3L, 3L, 3L, 6L, 13L, 7L, 16L, 12L, 5L, 4L, 6L, 10L,
8L, 3L, 7L, 6L, 6L, 10L, 5L, 7L, 8L, 5L, 3L, 2L, 3L, 4L,
4L, 2L, 4L, 5L, 2L, 2L, 5L, 2L, 2L, 12L, 7L, 3L, 7L, 4L,
9L, 6L, 3L, 3L, 4L, 1L, 12L, 3L, 3L, 4L, 3L, 2L, 2L, 3L,
2L, 3L, 2L, 4L, 8L, 2L, 2L, 3L, 4L, 4L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 5L, 1L, 9L, 2L, 22L, 3L, 2L, 6L, 4L, 2L, 3L, 3L,
2L, 4L, 4L, 4L, 4L, 3L, 17L, 2L, 7L, 2L, 1L, 4L, 6L, 6L,
8L, 8L, 5L, 2L, 3L, 3L, 3L, 3L, 5L, 2L, 2L, 2L, 2L, 2L, 4L,
4L, 6L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L,
1L, 2L, 2L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 3L,
2L, 2L, 2L, 3L, 3L, 4L, 3L, 2L, 3L, 2L, 2L, 8L, 2L, 3L, 3L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 4L, 3L, 1L, 3L, 13L, 4L, 9L, 4L, 3L, 2L, 3L, 4L,
3L, 2L, 8L, 4L, 10L, 10L, 2L, 3L, 6L, 8L, 6L, 3L, 3L, 2L,
7L, 5L, 3L, 12L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 5L, 2L, 7L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L)), row.names = c(NA,
500L), class = "data.frame")
merge(p, u, by = c('studie', 'sex', 'n_fjernet', 'n_sygdom'), all.x = T)
or
p %>%
left_join(., u, by = c('studie', 'sex', 'n_fjernet', 'n_sygdom'))