I'm trying to speed up my code because it's running very long. I already found out where the problem lies. Consider the following example:
x<-c((2+2i),(3+1i),(4+1i),(5+3i),(6+2i),(7+2i))
P<-matrix(c(2,0,0,3),nrow=2)
out<-sum(c(0.5,0.5)%*%mtx.exp(P%*%(matrix(c(x,0,0,x),nrow=2)),5))
I have a vector x with complex values, the vector has 12^11 entries and then I want to calculate the sum in the third row. (I need the function mtx.exp because it's a complex matrix power (the function is in the package Biodem). I found out that the %^% function does not support complex arguments.)
So my problem is that if I try
sum(c(0.5,0.5)%*%mtx.exp(P%*%(matrix(c(x,0,0,x),nrow=2)),5))
I get an error: "Error in pot %*% pot : non-conformable arguments." So my solution was to use a loop:
tmp<-NULL
for (i in 1:length(x)){
tmp[length(tmp)+1]<-sum(c(0.5,0.5)%*%mtx.exp(P%*%matrix(c(x[i],0,0,x[i]),nrow=2),5))
}
But as said, this takes very long. Do you have any ideas how to speed up the code? I also tried sapply but that takes just as long as the loop.
I hope you can help me, because i have to run this function approximatly 500 times and this took in first try more than 3 hours. Which is not very satisfying..
Thank u very much
The code can be sped up by pre-allocating your vector,
tmp <- rep(NA,length(x))
but I do not really understand what you are trying to compute:
in the first example,
you are trying to take the power of a non-square matrix,
in the second, you are taking the power of a diagonal matrix
(which can be done with ^).
The following seems to be equivalent to your computations:
sum(P^5/2) * x^5
EDIT
If P is not diagonal and C not scalar,
I do not see any easy simplification of mtx.exp( P %*% C, 5 ).
You could try something like
y <- sapply(x, function(u)
sum(
c(0.5,0.5)
%*%
mtx.exp( P %*% matrix(c(u,0,0,u),nrow=2), 5 )
)
)
but if your vector really has 12^11 entries,
that will take an insanely long time.
Alternatively, since you have a very large number
of very small (2*2) matrices,
you can explicitely compute the product P %*% C
and its 5th power (using some computer algebra system:
Maxima, Sage, Yacas, Maple, etc.)
and use the resulting formulas:
these are just (50 lines of) straightforward operations on vectors.
/* Maxima code */
p: matrix([p11,p12], [p21,p22]);
c: matrix([c1,0],[0,c2]);
display2d: false;
factor(p.c . p.c . p.c . p.c . p.c);
I then copy and paste the result in R:
c1 <- dnorm(abs(x),0,1); # C is still a diagonal matrix
c2 <- dnorm(abs(x),1,3);
p11 <- P[1,1]
p12 <- P[1,2]
p21 <- P[2,1]
p22 <- P[2,2]
# Result of the Maxima computations:
# I just add all the elements of the resulting 2*2 matrix,
# but you may want to do something slightly different with them.
c1*(c2^4*p12*p21*p22^3+2*c1*c2^3*p11*p12*p21*p22^2
+2*c1*c2^3*p12^2*p21^2*p22
+3*c1^2*c2^2*p11^2*p12*p21*p22
+3*c1^2*c2^2*p11*p12^2*p21^2
+4*c1^3*c2*p11^3*p12*p21+c1^4*p11^5)
+
c2*p12
*(c2^4*p22^4+c1*c2^3*p11*p22^3+3*c1*c2^3*p12*p21*p22^2
+c1^2*c2^2*p11^2*p22^2+4*c1^2*c2^2*p11*p12*p21*p22
+c1^3*c2*p11^3*p22+c1^2*c2^2*p12^2*p21^2
+3*c1^3*c2*p11^2*p12*p21+c1^4*p11^4)
+
c1*p21
*(c2^4*p22^4+c1*c2^3*p11*p22^3+3*c1*c2^3*p12*p21*p22^2
+c1^2*c2^2*p11^2*p22^2+4*c1^2*c2^2*p11*p12*p21*p22
+c1^3*c2*p11^3*p22+c1^2*c2^2*p12^2*p21^2
+3*c1^3*c2*p11^2*p12*p21+c1^4*p11^4)
+
c2*(c2^4*p22^5+4*c1*c2^3*p12*p21*p22^3
+3*c1^2*c2^2*p11*p12*p21*p22^2
+3*c1^2*c2^2*p12^2*p21^2*p22
+2*c1^3*c2*p11^2*p12*p21*p22
+2*c1^3*c2*p11*p12^2*p21^2+c1^4*p11^3*p12*p21)
Related
I'm fairly new to R and am thus not that knowledgeable yet about its different functionalities. I'm wondering if there is a more efficient way to replicate the following other than writing and running 230 lines of code.
I have two matrices, Z and E, which contain continuous numerical data and have the dimensions 7x229 and 17x229 respectively. For each column (so 229 times) I want to create a new 119x119 matrix by using the (repeated) formula below
ZZEE1 <- kronecker((Z[,1] %*% t(Z[,1])), (E[,1] %*% t(E[,1])))
ZZEE2 <- kronecker((Z[,2] %*% t(Z[,2])), (E[,2] %*% t(E[,2])))
ZZEE3 <- kronecker((Z[,3] %*% t(Z[,3])), (E[,3] %*% t(E[,3])))
ZZEE4 <- kronecker((Z[,4] %*% t(Z[,4])), (E[,4] %*% t(E[,4])))
#...
ZZEE228 <- kronecker((Z[,228] %*% t(Z[,228])), (E[,228] %*% t(E[,228])))
ZZEE229 <- kronecker((Z[,229] %*% t(Z[,229])), (E[,229] %*% t(E[,229])))
After this is done, I want to add all 229 matrices up into one matrix like this (not complete)
Sum_ZZEE <- ZZEE1 + ZZEE2 + ZZEE3 + ZZEE4 + ZZEE228 + ZZEE229 #Sum of all matrices from ZZEE1 to ZZEE229
Is there a quicker fix out there that will do exactly this? I have tried to find an answer online but did not find something that worked or something that I understood to the extent that I could modify it to my own data/code. As far as I understood it, there might be a fix with the function() function, but I would not know how to code it correctly. Getting the 'Sum_ZZEE' matrix is the final goal, I do not necessarily need the individual matrices stored in the workspace. Much obliged!
First construct a list of matrices: the following two code chunks are equivalent, use whichever is clearer to you.
ZZ_list <- lapply(1:229,
function(i) kronecker((Z[,i] %*% t(Z[,i])), (E[,i] %*% t(E[,i])))
)
or
ZZ_list <- list()
for (i in 1:229) {
ZZ_list[[i]] <- kronecker((Z[,i] %*% t(Z[,i])), (E[,i] %*% t(E[,i])))
}
Then use Reduce() (unfortunately sum() doesn't work the way you want):
answer <- Reduce("+", ZZ_list)
There might be some super-clever answer that works in pure linear algebra (e.g. with stacking/unstacking operators) ...
This question is in reference is an observation from a code-golf challenge.
The submitted R solution is a working solution, but a few of us (maybe just I) seems to be dumbfounded as to why the initial X=m reassignment is necessary.
The code is golfed down a bit by #Giuseppe, so I'll write a few comments for the reader.
function(m){
X=m
# Re-assign input m as X
while(any(X-(X=X%*%m))) 0
# Instead of doing the meat of the calculation in the code block after `while`
# OP exploited its infinite looping properties to perform the
# calculations within the condition check.
# `-` here is an abuse of inequality check and relies on `any` to coerce
# the numeric to logical. See `as.logical(.Machine$double.xmin)`
# The code basically multiplies the matrix `X` with the starting matrix `m`
# Until the condition is met: X == X%*%m
X
# Return result
}
Well as far as I can tell. Multiplying X%*%m is equivalent to X%*%X since X is a just an iteratively self-multiplied version of m. Once the matrix has converged, multiplying additional copies of m or X does not change its value. See linear algebra textbook or v(m)%*%v(m)%*%v(m)%*%v(m)%*%v(m)%*%m%*%m after defining the above function as v. Fun right?
So the question is, why does #CodesInChaos's implementation of this idea not work?
function(m){while(any(m!=(m=m%*%m)))0 m}
Is this caused by a floating point precision issue? Or is this caused by the a function in the code such as the inequality check or .Primitive("any")? I do not believe this is caused by as.logical since R seems to coerce errors smaller than .Machine$double.xmin to 0.
Here is a demonstration of above. We are simply looping and taking the difference between m and m%*%m. This error becomes 0 as we try to converge the stochastic matrix. It seems to converge then blow to 0/INF eventually depending on the input.
mat = matrix(c(7/10, 4/10, 3/10, 6/10), 2, 2, byrow = T)
m = mat
for (i in 1:25) {
m = m%*%m
cat("Mean Error:", mean(m-(m=m%*%m)),
"\n Float to Logical:", as.logical(m-(m=m%*%m)),
"\n iter", i, "\n")
}
Some additional thoughts on why this is a floating point math issue
1) the loop indicates that this is probably not a problem with any or any logical check/conversion step but rather something to do with float matrix math.
2) #user202729's comment in the original thread that this issue persists in Jelly, a code golf language gives more credence to the idea that this is a perhaps a floating point issue.
The different methods iterate different functions, both starting with seed value m. Function iteration only converges to a given fixed point if that fixed point is stable and the seed is within the basin of attraction of that fixed point.
In the original code, you are iterating the function
f <- function(X) X %*% m
The limit matrix is a stable fixed-point under the assumption (stated in the Code Gulf problem) that a well-defined limit exists. Since the function definition depends on m, it isn't surprising that the fixed point is a function of m.
On the other hand, the proposed variation using m = m %*% m is obtained by iterating the function
g <- function(X) X %*% X
Note that all idempotent matrices are fixed points of this function but clearly they can't all be stable fixed points. Apparently, the limiting matrix in the original fixed function is not a stable fixed point of g (even though it is a fixed point).
To really nail this down, you would need to get into the theory of matrix fixed points under function iteration to show why the fixed point in the case of g is unstable.
This is indeed a floating point math issue. To see it, see the results of this function:
test2 <- function(m) {
c <- 0
res <- list()
while (any(m!=(m=m%*%m))) {
c <- c + 1
res[[c]] <- m
}
print(c)
res
}
To test equality with some tolerance, you can use:
test3 <- function(m) {
while (!isTRUE(all.equal(m, m <- m %*% m))) 0
m
}
I usually have trouble inputing functions in R but they are always simple functions that I manage to work it out. However now I have a very complicated problem at hand that requires functions that has unknowns, summation and a matrix. And I am clueless where to begin. (This is not my homework question, just trying to work out something using a different method, hoping it works)
So I want to input a function:
A=∑i=1 N exp ^ [ ∑j=1 M Matrix ij * unknownj ]
and then minimize the function:
B= log A - ∑j=1 M unknown j * C j
so my goal is to find the j unknown parameters that minimizes function B.
But this is very complicated. You do not have to give me an answer directly. You can use another example to answer my question indirectly. Any help/tips/guidance is appreciated.
Let's see if we can break the problem into smaller things:
Let's name some variables first:
Let Q be an matrix with N rows and M columns
Let x be a (column) vector of length M (for a moment, think it's not an "unknown")
Let C be a (column) vector of length M
Notice that both A and B will be "scalars" (or, in R parlance, 1x1 vectors).
Hint: In R, you can do matrix multiplication using the %*% operator. See Quick-R: Matrix algebra.
Working on function A
Q %*% x is the product inside the sum which is inside the exponential function, so:
A <- function (Q, x) {
y <- Q %*% x # This will be a (column) vector of length `N`
return(sum(exp(y)) # This will be a scalar (more precisely, a 1x1 vector)
}
Not so hard, is it?
Working on function B
B <- function(Q, C, x) {
y <- sum(x * C) # or, since both x and C are column vectors:
# y <- t(x) %*% C
a <- A(Q, x)
return(log(a) - y)
}
So, that's how you would input the functions.
As for the optimization, I suggest you take a look to the optimx package; you'll need to supply starting values for vector x.
I've a dataset with X and Y value obtained from a calibration and I have to interpolate them with a predefined list of polynomial functions and choose the one with the best R2.
The most silly function should be
try<-function(X,Y){
f1<- x + I(x^2.0) - I(x^3.0)
f2<- x + I(x^1.5) - I(x^3.0)
...
f20<- I(x^2.0) - I(x^2.5) + I(x^0.5)
r1<- lm(y~f1)
r2<- lm(y~f2)
...
r20<-lm(y~f20)
v1<-summary(r1)$r.squared
v2<-summary(r2)$r.squared
...
v20<-summary(r20)$r.squared
v<-c(v1,v2,...,v20)
return(v)
}
I'd like then to make this function shorter and smarter (especially from the definition of r1 to the end). I'd also like to give the user the possibility to choose a function among f1 to f20 (typing the desired row number of v) and see the output of the function print and plot on it.
Please, could you help me?
Thank you.
#mso: the idea of using sapply is nice but unfortunately in this way I don't use a polynome for the regression: my x vector is transformed in the f1 vector according to the formula and then used for the regression. I obtain just one parameter instead of 3 (in this case).
Create F as a list and proceed:
F = list(f1, f2, ...., f20)
r = sapply(F, function(x) lm(y~x))
v = sapply(r, function(x) summary(x)$r.squared)
return v
sapply will take each element of F and perform lm with y and put results in vector r. In next line, sapply will take every element of r and get summary and put the results in the vector v. Hopefully, it should work. You could also try lapply (instead of sapply) which is very similar.
Suppose I have a function f(x) that is well defined on an interval I. I want to find the greatest and smallest roots of f(x), then taking the difference of them. What is a good way to program it?
To be precise, f can at worst be a rational function like (1+x)/(1-x). It should be a (high degree) polynomial most of the times. I only need to know the result numerically to some precision.
I am thinking about the following:
Convert f(x) into a form recognizable by R. (I can do)
Use R to list all roots of f(x) on I (I found the uniroot function only give me one root)
Use R to to find the maximum and minimum elements in the list (should be possible once I converted it to a vector)
Taking the difference of the two roots. (should be trivial)
I am stuck on step (2) and I do not know what to do. My professor give a brutal force solution, suggesting me to do:
Divide interval I into one million pieces.
Evaluate f on each end points, find the end points where f>=0.
Choose the maximum and minimum elements from the set formed in step 2.
Take the difference between them.
I feel this way is not very efficient and might not work for all f in general, but I am having trouble to implement it even for quadratics. I do not know how to do step (2) as well. So I want to ask for a hint or some toy examples.
At this point I am trying to implement the following code:
Y=rep(0,200)
dim(Y)=c(100,2)
for(i in 1:100){
X=rnorm(9,0,1)
Z=rnorm(16,0,1)
a=0.64
b=a*sum(Z^2)/sum(X^2)
root_intervals <- function(f, interval, n = 1e6) {
xvals <- seq(interval[1], interval[2], length = n)
yvals <- f(xvals)
ypos <- yvals > 0
x1 <- which(tail(ypos, -1) != head(ypos, -1))
x2 <- x1 + 1
## so all the zeroes we can see are between x1 and x2
return(cbind(xvals[x1], xvals[x2]))
}
at here everything is okay, but when I try to extract the roots to Y[i,1], Y[i,2] by
Y[i,1]=(ri<-root intervals(function(x)(x/(a*x+b))^{9/2}*(1/((1-a)+a*(1-a)/b*x))^4-0.235505, c(0,40),n=1e6)[1]
I found I cannot evaluate it anymore. R keep telling me
Error: unexpected symbol in:
"}
Y[i,1]=(ri<-root intervals"
and I got stuck. I really appreciate everyone's help as I am feeling lost.
I checked the function's expression many times using the plot function and it has no grammar mistakes. Also I believe it is well defined for all X in the interval.
This should give you a good start on the brute force solution. You're right, it's not elegant, but for relatively simple univariate functions, evaluating 1 million points is trivial.
root_intervals <- function(f, interval, n = 1e6) {
xvals <- seq(interval[1], interval[2], length = n)
yvals <- f(xvals)
ypos <- yvals > 0
x1 <- which(ypos[-1] != head(ypos, -1))
x2 <- x1 + 1
## so all the zeroes we can see are between x1 and x2
return(cbind(xvals[x1], xvals[x2]))
}
This function returns a two column matrix of x values, where the function changes sign between column 1 and column 2:
f1 <- function (x) 0.05 * x^5 - 2 * x^4 + x^3 - x^2 + 1
> (ri <- root_intervals(f1, c(-10, 10), n = 1e6))
[,1] [,2]
[1,] -0.6372706 -0.6372506
[2,] 0.8182708 0.8182908
> f1(ri)
[,1] [,2]
[1,] -3.045326e-05 6.163467e-05
[2,] 2.218895e-05 -5.579081e-05
Wolfram Alpha confirms results on the specified interval.
The top and bottom rows will be the min and max intervals found. These intervals (over which the function changes sign) are precisely what uniroot wants for it's interval, so you could use it to solve for the (more) exact roots. Of course, if the function changes sign twice within one interval (or any even number of times), it won't be picked up, so choose a big n!
Response to edited question:
Looks like your trying to define a bunch of functions, but your edits have syntax errors. Here's what I think you're trying to do: (this first part might take some more work to work right)
my_funs <- list()
Y=rep(0,200)
dim(Y)=c(100,2)
for(i in 1:100){
X=rnorm(9,0,1)
Z=rnorm(16,0,1)
a=0.64
b=a*sum(Z^2)/sum(X^2)
my_funs[[i]] <- function(x){(x/(a*x+b))^{9/2}*(1/((1-a)+a*(1-a)/b*x))^4-0.235505}
}
Here's using the root_intervals on the first of your generated functions.
> root_intervals(my_funs[[1]], interval = c(0, 40))
[,1] [,2]
[1,] 0.8581609 0.8582009
[2,] 11.4401314 11.4401714
Notice the output, a matrix, with the roots of the function being between the first and second columns. Being a matrix, you can't assign it to a vector. If you want a single root, use uniroot using each row to set the upper and lower bounds. This is left as an exercise to the reader.