R - function input and optimization - r

I usually have trouble inputing functions in R but they are always simple functions that I manage to work it out. However now I have a very complicated problem at hand that requires functions that has unknowns, summation and a matrix. And I am clueless where to begin. (This is not my homework question, just trying to work out something using a different method, hoping it works)
So I want to input a function:
A=∑i=1 N exp ^ [ ∑j=1 M Matrix ij * unknownj ]
and then minimize the function:
B= log A - ∑j=1 M unknown j * C j
so my goal is to find the j unknown parameters that minimizes function B.
But this is very complicated. You do not have to give me an answer directly. You can use another example to answer my question indirectly. Any help/tips/guidance is appreciated.

Let's see if we can break the problem into smaller things:
Let's name some variables first:
Let Q be an matrix with N rows and M columns
Let x be a (column) vector of length M (for a moment, think it's not an "unknown")
Let C be a (column) vector of length M
Notice that both A and B will be "scalars" (or, in R parlance, 1x1 vectors).
Hint: In R, you can do matrix multiplication using the %*% operator. See Quick-R: Matrix algebra.
Working on function A
Q %*% x is the product inside the sum which is inside the exponential function, so:
A <- function (Q, x) {
y <- Q %*% x # This will be a (column) vector of length `N`
return(sum(exp(y)) # This will be a scalar (more precisely, a 1x1 vector)
}
Not so hard, is it?
Working on function B
B <- function(Q, C, x) {
y <- sum(x * C) # or, since both x and C are column vectors:
# y <- t(x) %*% C
a <- A(Q, x)
return(log(a) - y)
}
So, that's how you would input the functions.
As for the optimization, I suggest you take a look to the optimx package; you'll need to supply starting values for vector x.

Related

faster 'outer' implementation in R

I was trying to use outer() function in R to create a matrix by pairwise evaluation of elements in a vector of dimension n. Specifically, let x be n-dimensional vector and I want to compare each pair of the elements of x. To do so, I use the following naive implementation using outer() function.
# these codes are example
n <- 500
x <- rnorm(n)
f <- function(x, y){
as.numeric(x<y)+0.5*as.numeric(x==y)
}
#new.mat <- outer(seq_len(n), seq_len(n), f) this was posted wrongly
new.mat <- outer(x, x, f) # edited
This implementation is extremely slow when n increases, and I would like to know an efficient way of doing this job. I really appreciate if you introduce me to your trick.
Thanks,
Alemu

What is going on with floating point precision here?

This question is in reference is an observation from a code-golf challenge.
The submitted R solution is a working solution, but a few of us (maybe just I) seems to be dumbfounded as to why the initial X=m reassignment is necessary.
The code is golfed down a bit by #Giuseppe, so I'll write a few comments for the reader.
function(m){
X=m
# Re-assign input m as X
while(any(X-(X=X%*%m))) 0
# Instead of doing the meat of the calculation in the code block after `while`
# OP exploited its infinite looping properties to perform the
# calculations within the condition check.
# `-` here is an abuse of inequality check and relies on `any` to coerce
# the numeric to logical. See `as.logical(.Machine$double.xmin)`
# The code basically multiplies the matrix `X` with the starting matrix `m`
# Until the condition is met: X == X%*%m
X
# Return result
}
Well as far as I can tell. Multiplying X%*%m is equivalent to X%*%X since X is a just an iteratively self-multiplied version of m. Once the matrix has converged, multiplying additional copies of m or X does not change its value. See linear algebra textbook or v(m)%*%v(m)%*%v(m)%*%v(m)%*%v(m)%*%m%*%m after defining the above function as v. Fun right?
So the question is, why does #CodesInChaos's implementation of this idea not work?
function(m){while(any(m!=(m=m%*%m)))0 m}
Is this caused by a floating point precision issue? Or is this caused by the a function in the code such as the inequality check or .Primitive("any")? I do not believe this is caused by as.logical since R seems to coerce errors smaller than .Machine$double.xmin to 0.
Here is a demonstration of above. We are simply looping and taking the difference between m and m%*%m. This error becomes 0 as we try to converge the stochastic matrix. It seems to converge then blow to 0/INF eventually depending on the input.
mat = matrix(c(7/10, 4/10, 3/10, 6/10), 2, 2, byrow = T)
m = mat
for (i in 1:25) {
m = m%*%m
cat("Mean Error:", mean(m-(m=m%*%m)),
"\n Float to Logical:", as.logical(m-(m=m%*%m)),
"\n iter", i, "\n")
}
Some additional thoughts on why this is a floating point math issue
1) the loop indicates that this is probably not a problem with any or any logical check/conversion step but rather something to do with float matrix math.
2) #user202729's comment in the original thread that this issue persists in Jelly, a code golf language gives more credence to the idea that this is a perhaps a floating point issue.
The different methods iterate different functions, both starting with seed value m. Function iteration only converges to a given fixed point if that fixed point is stable and the seed is within the basin of attraction of that fixed point.
In the original code, you are iterating the function
f <- function(X) X %*% m
The limit matrix is a stable fixed-point under the assumption (stated in the Code Gulf problem) that a well-defined limit exists. Since the function definition depends on m, it isn't surprising that the fixed point is a function of m.
On the other hand, the proposed variation using m = m %*% m is obtained by iterating the function
g <- function(X) X %*% X
Note that all idempotent matrices are fixed points of this function but clearly they can't all be stable fixed points. Apparently, the limiting matrix in the original fixed function is not a stable fixed point of g (even though it is a fixed point).
To really nail this down, you would need to get into the theory of matrix fixed points under function iteration to show why the fixed point in the case of g is unstable.
This is indeed a floating point math issue. To see it, see the results of this function:
test2 <- function(m) {
c <- 0
res <- list()
while (any(m!=(m=m%*%m))) {
c <- c + 1
res[[c]] <- m
}
print(c)
res
}
To test equality with some tolerance, you can use:
test3 <- function(m) {
while (!isTRUE(all.equal(m, m <- m %*% m))) 0
m
}

Vectorizing code to calculate (squared) Mahalanobis Distiance

EDIT 2: this post seems to have been moved from CrossValidated to StackOverflow due to it being mostly about programming, but that means by fancy MathJax doesn't work anymore. Hopefully this is still readable.
Say I want to to calculate the squared Mahalanobis distance between two vectors x and y with covariance matrix S. This is a fairly simple function defined by
M2(x, y; S) = (x - y)^T * S^-1 * (x - y)
With python's numpy package I can do this as
# x, y = numpy.ndarray of shape (n,)
# s_inv = numpy.ndarray of shape (n, n)
diff = x - y
d2 = diff.T.dot(s_inv).dot(diff)
or in R as
diff <- x - y
d2 <- t(diff) %*% s_inv %*% diff
In my case, though, I am given
m by n matrix X
n-dimensional vector mu
n by n covariance matrix S
and want to find the m-dimensional vector d such that
d_i = M2(x_i, mu; S) ( i = 1 .. m )
where x_i is the ith row of X.
This is not difficult to accomplish using a simple loop in python:
d = numpy.zeros((m,))
for i in range(m):
diff = x[i,:] - mu
d[i] = diff.T.dot(s_inv).dot(diff)
Of course, given that the outer loop is happening in python instead of in native code in the numpy library means it's not as fast as it could be. $n$ and $m$ are about 3-4 and several hundred thousand respectively and I'm doing this somewhat often in an interactive program so a speedup would be very useful.
Mathematically, the only way I've been able to formulate this using basic matrix operations is
d = diag( X' * S^-1 * X'^T )
where
x'_i = x_i - mu
which is simple to write a vectorized version of, but this is unfortunately outweighed by the inefficiency of calculating a 10-billion-plus element matrix and only taking the diagonal... I believe this operation should be easily expressible using Einstein notation, and thus could hopefully be evaluated quickly with numpy's einsum function, but I haven't even begun to figure out how that black magic works.
So, I would like to know: is there either a nicer way to formulate this operation mathematically (in terms of simple matrix operations), or could someone suggest some nice vectorized (python or R) code that does this efficiently?
BONUS QUESTION, for the brave
I don't actually want to do this once, I want to do it k ~ 100 times. Given:
m by n matrix X
k by n matrix U
Set of n by n covariance matrices each denoted S_j (j = 1..k)
Find the m by k matrix D such that
D_i,j = M(x_i, u_j; S_j)
Where i = 1..m, j = 1..k, x_i is the ith row of X and u_j is the jth row of U.
I.e., vectorize the following code:
# s_inv is (k x n x n) array containing "stacked" inverses
# of covariance matrices
d = numpy.zeros( (m, k) )
for j in range(k):
for i in range(m):
diff = x[i, :] - u[j, :]
d[i, j] = diff.T.dot(s_inv[j, :, :]).dot(diff)
First off, it seems like maybe you're getting S and then inverting it. You shouldn't do that; it's slow and numerically inaccurate. Instead, you should get the Cholesky factor L of S so that S = L L^T; then
M^2(x, y; L L^T)
= (x - y)^T (L L^T)^-1 (x - y)
= (x - y)^T L^-T L^-1 (x - y)
= || L^-1 (x - y) ||^2,
and since L is triangular L^-1 (x - y) can be computed efficiently.
As it turns out, scipy.linalg.solve_triangular will happily do a bunch of these at once if you reshape it properly:
L = np.linalg.cholesky(S)
y = scipy.linalg.solve_triangular(L, (X - mu[np.newaxis]).T, lower=True)
d = np.einsum('ij,ij->j', y, y)
Breaking that down a bit, y[i, j] is the ith component of L^-1 (X_j - \mu). The einsum call then does
d_j = \sum_i y_{ij} y_{ij}
= \sum_i y_{ij}^2
= || y_j ||^2,
like we need.
Unfortunately, solve_triangular won't vectorize across its first argument, so you should probably just loop there. If k is only about 100, that's not going to be a significant issue.
If you are actually given S^-1 rather than S, then you can indeed do this with einsum more directly. Since S is quite small in your case, it's also possible that actually inverting the matrix and then doing this would be faster. As soon as n is a nontrivial size, though, you're throwing away a lot of numerical accuracy by doing this.
To figure out what to do with einsum, write everything in terms of components. I'll go straight to the bonus case, writing S_j^-1 = T_j for notational convenience:
D_{ij} = M^2(x_i, u_j; S_j)
= (x_i - u_j)^T T_j (x_i - u_j)
= \sum_k (x_i - u_j)_k ( T_j (x_i - u_j) )_k
= \sum_k (x_i - u_j)_k \sum_l (T_j)_{k l} (x_i - u_j)_l
= \sum_{k l} (X_{i k} - U_{j k}) (T_j)_{k l} (X_{i l} - U_{j l})
So, if we make arrays X of shape (m, n), U of shape (k, n), and T of shape (k, n, n), then we can write this as
diff = X[np.newaxis, :, :] - U[:, np.newaxis, :]
D = np.einsum('jik,jkl,jil->ij', diff, T, diff)
where diff[j, i, k] = X_[i, k] - U[j, k].
Dougal nailed this one with an excellent and detailed answer, but thought I'd share a small modification that I found increases efficiency in case anyone else is trying to implement this. Straight to the point:
Dougal's method was as follows:
def mahalanobis2(X, mu, sigma):
L = np.linalg.cholesky(sigma)
y = scipy.linalg.solve_triangular(L, (X - mu[np.newaxis,:]).T, lower=True)
return np.einsum('ij,ij->j', y, y)
A mathematically equivalent variant I tried is
def mahalanobis2_2(X, mu, sigma):
# Cholesky decomposition of inverse of covariance matrix
# (Doing this in either order should be equivalent)
linv = np.linalg.cholesky(np.linalg.inv(sigma))
# Just do regular matrix multiplication with this matrix
y = (X - mu[np.newaxis,:]).dot(linv)
# Same as above, but note different index at end because the matrix
# y is transposed here compared to above
return np.einsum('ij,ij->i', y, y)
Ran both versions head-to-head 20x using identical random inputs and recorded the times (in milliseconds). For X as a 1,000,000 x 3 matrix (mu and sigma 3 and 3x3) I get:
Method 1 (min/max/avg): 30/62/49
Method 2 (min/max/avg): 30/47/37
That's about a 30% speedup for the 2nd version. I'm mostly going to be running this in 3 or 4 dimensions but to see how it scaled I tried X as 1,000,000 x 100 and got:
Method 1 (min/max/avg): 970/1134/1043
Method 2 (min/max/avg): 776/907/837
which is about the same improvement.
I mentioned this in a comment on Dougal's answer but adding here for additional visibility:
The first pair of methods above take a single center point mu and covariance matrix sigma and calculate the squared Mahalanobis distance to each row of X. My bonus question was to do this multiple times with many sets of mu and sigma and output a two-dimensional matrix. The set of methods above can be used to accomplish this with a simple for loop, but Dougal also posted a more clever example using einsum.
I decided to compare these methods with each other by using them to solve the following problem: Given k d-dimensional normal distributions (with centers stored in rows of k by d matrix U and covariance matrices in the last two dimensions of the k by d by d array S), find the density at the n points stored in rows of the n by d matrix X.
The density of a multivariate normal distribution is a function of the squared Mahalanobis distance of the point to the mean. Scipy has an implementation of this as scipy.stats.multivariate_normal.pdf to use as a reference. I ran all three methods against each other 10x using identical random parameters each time, with d=3, k=96, n=5e5. Here are the results, in points/sec:
[Method]: (min/max/avg)
Scipy: 1.18e5/1.29e5/1.22e5
Fancy 1: 1.41e5/1.53e5/1.48e5
Fancy 2: 8.69e4/9.73e4/9.03e4
Fancy 2 (cheating version): 8.61e4/9.88e4/9.04e4
where Fancy 1 is the better of the two methods above and Fancy2 is Dougal's 2nd solution. Since the Fancy 2 needs to calculate the inverses of all the covariance matrices I also tried a "cheating version" where it was passed these as a parameter, but it looks like that didn't make a difference. I had planned on including the non-vectorized implementation but that was so slow it would have taken all day.
What we can take away from this is that using Dougal's first method is about 20% faster than however Scipy does it. Unfortunately despite its cleverness the 2nd method is only about 60% as fast as the first. There are probably some other optimizations that can be done but this is already fast enough for me.
I also tested how this scaled with higher dimensionality. With d=100, k=96, n=1e4:
Scipy: 7.81e3/7.91e3/7.86e3
Fancy 1: 1.03e4/1.15e4/1.08e4
Fancy 2: 3.75e3/4.10e3/3.95e3
Fancy 2 (cheating version): 3.58e3/4.09e3/3.85e3
Fancy 1 seems to have an even bigger advantage this time. Also worth noting that Scipy threw a LinAlgError 8/10 times, probably because some of my randomly-generated 100x100 covariance matrices were close to singular (which may mean that the other two methods are not as numerically stable, I did not actually check the results).

Non-conformable arrays in R

y <- matrix(c(7, 9, -5, 0, 2, 6), ncol = 1)
try <- t(y)
tryy <- try %*% y
i <- solve(tryy)
h <- y %*% i %*% try
uniroot(as.vector(solve(((1-x) * diag(6)) + h)), c(-Inf, Inf))
Error in (1 - x) * diag(6) : non-conformable arrays
The purpose of this command uniroot(as.vector(solve(((1-x) * diag(6)) + h)), c(-Inf, Inf)) is to solve the characteristics equation det[(1-λ)I+h] = 0
where, λ=eigenvalues , I=identity matrix , h=hat matrix=y(y'y)^(-1)y'
here λ is unknown ,we have to solve for it.
I am not understanding where is the problem here? I have tried as:
as.vector(solve(6*diag(6)+h))
This is not non-conformable. But why is not working inside the uniroot function?
Your question is a bit confusing, so I have to make a couple of assumptions. If you want the eigenvalues of h, then the characteristic equation is:
det(h - I*λ) = 0
not
det[(1-λ)I+h] = 0
So I used the former.
Given the above, the short answer is: do it this way.
f <- function(lambda) det(h -lambda*diag(6))
F <- Vectorize(f)
library(rootSolve)
uniroot.all(F,c(-1000,1000),n=2000)
# [1] 0 1
# or, much more simply
eigen(h)$values
# [1] 1.000000e+00 2.220446e-16 0.000000e+00 -2.731318e-18 -6.876381e-18 -7.365903e-17
So h has 2 eigenvalues, 0 and 1. Note that the built-in function eigen(...) finds 6 roots, but 5 of them are within the machine tolerance of 0.
The question about why your code fails is a bit more involved.
First, your code:
tryy <- try %*% y
is the dot product of y with itself (so, a scalar), returned as a matrix with one element. When you "invert" that using solve(...)
i <- solve(tryy)
you simply take the reciprocal, so i is also a matrix with 1 element. I'm not sure if this is what you had in mind.
Second, uniroot(...) does not work this way. The first argument must be a function; you've passed an expression which depends on x, which in turn is undefined. You could try:
f <- function(x) det(h-x*diag(6))
uniroot(f,c(-Inf,Inf))
but this wouldn't work either because (a) uniroot(...) works on a finite interval, (b) it requires that the function f(...) have different sign at the ends of the interval, and (c) in any event it would return only one root (the smaller one).
So you could use uniroot.all(...) in package rootSolve. uniroot.all(...) also requires a function as it's first argument, but there's a twist: the function must be "vectorized". This means that if you pass a vector of lambda values, f(...) should return a vector of the same length. Fortunately in R there is an easy way to "vectorize" a given function, as in:
F <- Vectorize(f).
Even this has it's limits. uniroot.all(...) also requires a finite interval, so we have to guess what that is, and also it evaluates F on n sub-intervals. So if your interval does not contain all the roots, or if the sub-intervals are not small enough, you will not find all the roots.
Using the built-in eigen(...) function is definitely the best option.

Vectorize function to avoid loop

I'm trying to speed up my code because it's running very long. I already found out where the problem lies. Consider the following example:
x<-c((2+2i),(3+1i),(4+1i),(5+3i),(6+2i),(7+2i))
P<-matrix(c(2,0,0,3),nrow=2)
out<-sum(c(0.5,0.5)%*%mtx.exp(P%*%(matrix(c(x,0,0,x),nrow=2)),5))
I have a vector x with complex values, the vector has 12^11 entries and then I want to calculate the sum in the third row. (I need the function mtx.exp because it's a complex matrix power (the function is in the package Biodem). I found out that the %^% function does not support complex arguments.)
So my problem is that if I try
sum(c(0.5,0.5)%*%mtx.exp(P%*%(matrix(c(x,0,0,x),nrow=2)),5))
I get an error: "Error in pot %*% pot : non-conformable arguments." So my solution was to use a loop:
tmp<-NULL
for (i in 1:length(x)){
tmp[length(tmp)+1]<-sum(c(0.5,0.5)%*%mtx.exp(P%*%matrix(c(x[i],0,0,x[i]),nrow=2),5))
}
But as said, this takes very long. Do you have any ideas how to speed up the code? I also tried sapply but that takes just as long as the loop.
I hope you can help me, because i have to run this function approximatly 500 times and this took in first try more than 3 hours. Which is not very satisfying..
Thank u very much
The code can be sped up by pre-allocating your vector,
tmp <- rep(NA,length(x))
but I do not really understand what you are trying to compute:
in the first example,
you are trying to take the power of a non-square matrix,
in the second, you are taking the power of a diagonal matrix
(which can be done with ^).
The following seems to be equivalent to your computations:
sum(P^5/2) * x^5
EDIT
If P is not diagonal and C not scalar,
I do not see any easy simplification of mtx.exp( P %*% C, 5 ).
You could try something like
y <- sapply(x, function(u)
sum(
c(0.5,0.5)
%*%
mtx.exp( P %*% matrix(c(u,0,0,u),nrow=2), 5 )
)
)
but if your vector really has 12^11 entries,
that will take an insanely long time.
Alternatively, since you have a very large number
of very small (2*2) matrices,
you can explicitely compute the product P %*% C
and its 5th power (using some computer algebra system:
Maxima, Sage, Yacas, Maple, etc.)
and use the resulting formulas:
these are just (50 lines of) straightforward operations on vectors.
/* Maxima code */
p: matrix([p11,p12], [p21,p22]);
c: matrix([c1,0],[0,c2]);
display2d: false;
factor(p.c . p.c . p.c . p.c . p.c);
I then copy and paste the result in R:
c1 <- dnorm(abs(x),0,1); # C is still a diagonal matrix
c2 <- dnorm(abs(x),1,3);
p11 <- P[1,1]
p12 <- P[1,2]
p21 <- P[2,1]
p22 <- P[2,2]
# Result of the Maxima computations:
# I just add all the elements of the resulting 2*2 matrix,
# but you may want to do something slightly different with them.
c1*(c2^4*p12*p21*p22^3+2*c1*c2^3*p11*p12*p21*p22^2
+2*c1*c2^3*p12^2*p21^2*p22
+3*c1^2*c2^2*p11^2*p12*p21*p22
+3*c1^2*c2^2*p11*p12^2*p21^2
+4*c1^3*c2*p11^3*p12*p21+c1^4*p11^5)
+
c2*p12
*(c2^4*p22^4+c1*c2^3*p11*p22^3+3*c1*c2^3*p12*p21*p22^2
+c1^2*c2^2*p11^2*p22^2+4*c1^2*c2^2*p11*p12*p21*p22
+c1^3*c2*p11^3*p22+c1^2*c2^2*p12^2*p21^2
+3*c1^3*c2*p11^2*p12*p21+c1^4*p11^4)
+
c1*p21
*(c2^4*p22^4+c1*c2^3*p11*p22^3+3*c1*c2^3*p12*p21*p22^2
+c1^2*c2^2*p11^2*p22^2+4*c1^2*c2^2*p11*p12*p21*p22
+c1^3*c2*p11^3*p22+c1^2*c2^2*p12^2*p21^2
+3*c1^3*c2*p11^2*p12*p21+c1^4*p11^4)
+
c2*(c2^4*p22^5+4*c1*c2^3*p12*p21*p22^3
+3*c1^2*c2^2*p11*p12*p21*p22^2
+3*c1^2*c2^2*p12^2*p21^2*p22
+2*c1^3*c2*p11^2*p12*p21*p22
+2*c1^3*c2*p11*p12^2*p21^2+c1^4*p11^3*p12*p21)

Resources