How to get an average from layout of pts - 2d

Consider the following image:
How would I get the "average" (unknown what this is called) of a point on this plane? For example, if I was in between 23, 15, 45, and 34 on that grid, it would average all them together weighted by distance to each. For example, here I'd expect something like 25.
This is really difficult to explain and feel free to ask any questions you have.
Thanks so much for the help,
Kidovate

I'm not sure I did understand what you mean but - if I did - you may try to use a kNN algorithm. For example if that points are known values and you want to "guess" the value of an arbitrary point you can use that algorithm.
Basically you have to calculate the distance of each known point from the point you're calculating then sort the vector by distance and keep first k items (k Nearest Neighbors). Then you can simply use a weighted mean.
As start point: http://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

Related

Further explanation needed with combinatorics(hackerearth aryan-and-consulting-sessions)?

I am new to combinatorics problems and trying to understand how to solve this problem, I understand that nC2 is finding the numbers where order matters, but after that I have no idea how to proceed further in the math problem. Please explain further, no code needed.
https://www.hackerearth.com/practice/math/combinatorics/inclusion-exclusion/practice-problems/algorithm/aryan-and-consulting-sessions-0e0656ab/
Let students are graph vertices, possible pairs are edges. This graph is complete K_n, number of edges is p = n*(n-1)/2 (nC2 as you wrote)
We need to find number of edge covers for this graph.
I wanted to count numbers of edge covers containing from (p+1)/2 to p edges, but seems values are too big and this is rather complex problem.
But we can find formula for counting overall quantity of edge covers for complete graph K_n here in OEIS
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)
You also need to calculate binomial coefficients modulo m

quality analysis of fitted pyramid

sorry for posting this in programing site, but there might be many programming people who are professional in geometry, 3d geometry... so allow this.
I have been given best fitted planes with the original point data. I want to model a pyramid for this data as the data represent a pyramid. My approach of this modeling is
Finding the intersection lines (e.g. AB, CD,..etc) for each pair of adjacent plane
Then, finding the pyramid top (T) by intersecting the previously found lines as these lines don’t pass through a single point
Intersecting the available side planes with a desired horizontal plane to get the basement
In figure – black triangles are original best fitted triangles; red
and blue triangles are model triangles
I want to show that the points are well fitted for the pyramid model
than that it fitted for the given best fitted planes. (Assume original
planes are updated as shown)
Actually step 2 is done using weighted least square process. Each intersection line is assigned with a weight. Weight is proportional to the angle between normal vectors of corresponding planes. in this step, I tried to find the point which is closest to all the intersection lines i.e. point T. according to the weights, line positions might change with respect to the influence of high weight line. That mean, original planes could change little bit. So I want to show that these new positions of planes are well fitted for the original point data than original planes.
Any idea to show this? I am thinking to use RMSE and show before and after RMSE. But again I think I should use weighted RMSE as all the planes refereeing to the point T are influenced so that I should cope this as a global case rather than looking individual planes….. But I can’t figure out a way to show this. Or maybe I should use some other measure…
So, I am confused and no idea to show this.. Please help me…
If you are given the best-fit planes, why not intersect the three of them to get a single unambiguous T, then determine the lines AT, BT, and CT?
This is not a rhetorical question, by the way. Your actual question seems to be for reassurance that your procedure yields "well-fitted" results, but you have not explained or described what kind of fit you're looking for!
Unfortunately, without this information, your question cannot be answered as asked. If you describe your goals, we may be able to help you achieve them -- or, if you have not yet articulated them for yourself, that exercise may be enough to let you answer your own question...
That said, I will mention that the only difference between the planes you started with and the planes your procedure ends up with should be due to floating point error. This is because, geometrically speaking, all three lines should intersect at the same point as the planes that generated them.

Find the optimized rotation

I have an application where I must find a rotation from a set of 15 orderer&indexed 3D points (X1, X2, ..., X15) to another set of 15 points with the same index (1 initial point corresponding to 1 final point).
I've read manythings about finding the rotation with Euler angles (evil for some persons), quaternions or with projecting the vector on the basis axis. But i've an additionnal constraint : a few points of my final set can be wrong (i.e. have wrong coordinates) so I want to discriminate the points that ask a rotation very far from the median rotation.
My issue is : for every set of 3 points (not aligned ones) and their images I can compute quaternions (according to the fact that the transformation matrix won't be a pure rotation I have some additionnal calculations but it can be done). So I get a set of quaternions (455 ones max) and I want to remove the wrong ones.
Is there a way to find what points give rotations far from the mean rotation ? Does the "mean" and "the standard deviation" mean something for quaternions or must I compute Euler angles ? And once I've the set of "good" quaternions, how can I compute the "mean" quaternion/rotation ?
Cheers,
Ricola3D
In computer vision, there's a technique called RANSAC for doing something like what you propose. Instead of finding all of the possible quaternions, you would use a minimal set of point correspondences to find a single quaternion/transformation matrix. You'd then evaluate all of the points for quality of fit, discarding those that don't fit well enough. If you don't have enough good matches, perhaps you got a bad match in your original set. So you'll throw away that attempt and try again. If you do get enough good matches, you'll do a least-squares regression fit of all the inlier points to get a new transformation matrix and then iterate until you're happy with the results.
Alternatively, you could take all of your normalized quaternions and find the dot-product between them all. The dot-product should always be positive; if it's not for any given calculation, you should negate all of the components of one of the two quaternions and re-compute. You then have a distance measure between the quaternions and you can cluster or look for gaps.
There are 2 problems here:
how do you compute a "best fit" for an arbitrary number of points?
how do decide which points to accept, and which points to reject?
The general answer to the first is, "do a least squares fit". Quaternions would probably be better than Euler angles for this; try the following:
foreach point pair (a -> b), ideal rotation by unit quaternion q is:
b = q a q* -> q a - b q = 0
So, look for a least-squares fit for q:
minimize sum[over i] of |q a_i - b_i q|^2
under the constraint: |q|^2 = 1
As presented above, the least-squares problem is linear except for the constraint, which should make it easier to solve than an Euler angle formulation.
For the second problem, I can see two approaches:
if your points aren't too far off, you could try running the least-squares solver with all points, then go back, throw out the "outliers" (those point pairs whose squared-error is greatest), and try again.
if wildly inconsistent points are throwing off the above procedure, you could try selecting random, small subsets of 3 or 4 pairs, and find a least-squares fit for each. If a large group of these results have similar rotations with low total error, you can use this to identify "good" pairs (and thereby eliminate bad pairs); then go back and find a least-squares fit for all good pairs.

Maths - clustering of points

Hi all this is a very simple question, but my mind is a bit empty and i can't seem to find any satisfactory results on the internet.
Given a collection of 2d points (x,y), how can I determine how tightly grouped they are together.
Thanks
I guess an example would of helped.. I am trying to measure the "wobble" when aiming at a target, so I have every point the shooter aimed and I would like to see if they were steady or if they moved allot.
It depends on your definition of "tight grouping". One possibility is the sample variance, or the corresponding standard deviation. Crudely speaking, this gives you an "average" distance away from the centre point (which can be defined either as a known point, or as simply the average of your dataset).
For a group of 2D points, this can be defined as:
stddev = sqrt(var) = sqrt(1/N * SUM { (x - x0)^2 + (y - y0)^2 })
where (x0,y0) is the sample mean (i.e. the average of all your points).
This metric will be less sensitive to outliers than e.g. the bounding box metric.
One simple way to do this is to calculate the bounding box that contains all of the points and calculate the area from that, then divide the area value by the number of points to give you a points per area value. This could be enough depending on what you need it for but could be rather inacurate.

How do I calculate a normal vector based on multiple triangles sharing a vertex?

If I have a mesh of triangles, how does one go about calculating the normals at each given vertex?
I understand how to find the normal of a single triangle. If I have triangles sharing vertices, I can partially find the answer by finding each triangle's respective normal, normalizing it, adding it to the total, and then normalizing the end result. However, this obviously does not take into account proper weighting of each normal (many tiny triangles can throw off the answer when linked with a large triangle, for example).
I think a good method should be using a weighted average but using angles instead of area as weights. This is in my opinion a better answer because the normal you are computing is a "local" feature so you don't really care about how big is the triangle that is contributing... you need a sort of "local" measure of the contribution and the angle between the two sides of the triangle on the specified vertex is such a local measure.
Using this approach a lot of small (thin) triangles doesn't give you an unbalanced answer.
Using angles is the same as using an area-weighted average if you localize the computation by using the intersection of the triangles with a small sphere centered in the vertex.
The weighted average appears to be the best approach.
But be aware that, depending on your application, sharp corners could still give you problems. In that case, you can compute multiple vertex normals by averaging surface normals whose cross product is less than some threshold (i.e., closer to being parallel).
Search for Offset triangular mesh using the multiple normal vectors of a vertex by SJ Kim, et. al., for more details about this method.
This blog post outlines three different methods and gives a visual example of why the standard and simple method (area weighted average of the normals of all the faces joining at the vertex) might sometimes give poor results.
You can give more weight to big triangles by multiplying the normal by the area of the triangle.
Check out this paper: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds.
In particular, the "Discrete Mean Curvature Normal Operator" (Section 3.5, Equation 7) gives a robust normal that is independent of tessellation, unlike the methods in the blog post cited by another answer here.
Obviously you need to use a weighted average to get a correct normal, but using the triangles area won't give you what you need since the area of each triangle has no relationship with the % weight that triangles normal represents for a given vertex.
If you base it on the angle between the two sides coming into the vertex, you should get the correct weight for every triangle coming into it. It might be convenient if you could convert it to 2d somehow so you could go off of a 360 degree base for your weights, but most likely just using the angle itself as your weight multiplier for calculating it in 3d space and then adding up all the normals produced that way and normalizing the final result should produce the correct answer.

Resources