Problem when attempting to generate an array of random numbers in Mathematica - functional-programming

I am attempting to generate an array of random numbers in Mathematica in a functional manner. This is my current attempt so far:
Array[Random[Real, {-10, 10}], 7]
The problem is that this is printing always the same number, which, of course, is not what I am looking for. I do understand that Mathematica is evaluating Random[Real, {-10,10}] once and then using always the same value. How can I circumvent the problem, keeping this functional style?
Thanks

The first argument to Array is intended to be a function which is applied to each array index (in this case, the values 1 through 7). If you evaluate
Array[Random[Real, {-10, 10}], 7]
The result is something like this:
{3.91766[1], 3.91766[2], 3.91766[3], 3.91766[4], 3.91766[5],
3.91766[6], 3.91766[7]}
What has happened is this:
Random[Real, {-10, 10}] is evaluated producting 3.91766.
This result is used as a "function" and is applied to each array index.
Thus we see a list of expressions like 3.91766[1], an odd expression where a real number is being applied like a function to an integer.
If the intent is generate a list of 7 different random numbers, one could use:
Array[Random[Real, {-10, 10}] &, 7]
The only difference between this and the original expression is the presence of '&'. This makes the first argument a function. The function is applied to each array index (but ignores it), and then returns a new random number each time.
An alternative way to obtain this result uses Table:
Table[Random[Real, {-10, 10}], {7}]
In current versions of Mathematica, the Random function is obsolete and has been replaced by RandomInteger and RandomReal. In this case, RandomReal is useful:
RandomReal[{-10, 10}, 7]
... where the first argument is the range to choose from and the second argument is the number of desired values. Note that higher dimensional random arrays can also be generated, e.g.
RandomReal[{-10, 10}, {7, 7}]

You could use Array[Random[Real, {-10, 10}] &, 7]. Note the ampersand, which basically turns the first argument into a function with no arguments.
But WReach's methods are far superior...

I note that I'm not 100% profficient at this... but I've got some links that appear to help. The following seems to work for me. The numbers being (1.) The minimum (2.) The Maximum and (3.) The number of numbers to make.
RandomInteger[{1,5},10]
Take from here: here. Hope that helps!

Related

How can I improve the lindep function's applicability in Pari/GP for integral approximations?

While doing certain computations involving the Rogers L-function, the following result was generated by Wolfram Alpha:
                              
I wanted to verify this result in Pari/GP by means of the lindep function, so I calculated the integral to 20 digits in WA, yielding:
11.3879638800312828875
Then, I used the following code in Pari/GP:
lindep([zeta(2), zeta(3), 11.3879638800312828875])
As pi^2 = 6*zeta(2), one would expect the output to be a vector along the lines of:
[12,12,-3]
because that's the linear dependency suggested by WA's result. However, I got a very elaborate vector from Pari/GP:
[35237276454, -996904369, -4984618961]
I think the first vector should be the "right" output of the Pari code sample.
Questions:
Why is the lindep function in Pari/GP not yielding the output one would expect in this case?
What can I do to make it give the vector that would be more appropriate in this situation?
It comes down to Pari treating your rounded values as exact. Since you must round your values, lindep's solution doesn't always come to the same solution as the true answer due to error.
You can try changing the accuracy of lindep using the second argument. The manual states that you should choose this to be smaller than the number of correct decimal digits. I believe this should solve the issue.
lindep(v, {flag = 0}) finds a small nontrivial integral linear
combination between components of v. If none can be found return an
empty vector.
If v is a vector with real/complex entries we use a floating point
(variable precision) LLL algorithm. If flag = 0 the accuracy is chosen
internally using a crude heuristic. If flag > 0 the computation is
done with an accuracy of flag decimal digits. To get meaningful
results in the latter case, the parameter flag should be smaller than
the number of correct decimal digits in the input.

Boolean (BitArray) multidimensional array indexing or masking in Julia?

As part of a larger algorithm, I need to produce the residuals of an array relative to a specified limit. In other words, I need to produce an array which, given someArray, comprises elements which encode the amount by which the corresponding element of someArray exceeds a limit value. My initial inclination was to use a distributed comparison to determine when a value has exceeded the threshold. As follows:
# Generate some test data.
residualLimit = 1
someArray = 2.1.*(rand(10,10,3).-0.5)
# Determine the residuals.
someArrayResiduals = (residualLimit-someArray)[(residualLimit-someArray.<0)]
The problem is that the someArrayResiduals is a one-dimensional vector containing the residual values, rather than a mask of (residualLimit-someArray). If you check [(residualLimit-someArray.<0)] you'll find that it is behaving as expected; it's producing a BitArray. The question is, why doesn't Julia allow to use this BitArray to mask someArray?
Casting the Bools in the BitArray to Ints using int() and distributing using .*produces the desired result, but is a bit inelegant... See the following:
# Generate some test data.
residualLimit = 1
someArray = 2.1.*(rand(10,10,3).-0.5)
# Determine the residuals.
someArrayResiduals = (residualLimit-someArray).*int(residualLimit-someArray.<0)
# This array should be (and is) limited at residualLimit. This is correct...
someArrayLimited = someArray + someArrayResiduals
Anyone know why a BitArray can't be used to mask an array? Or, any way that this entire process can be simplified?
Thanks, all!
Indexing with a logical array simply selects the elements at indices where the logical array is true. You can think of it as transforming the logical index array with find before doing the indexing expression. Note that this can be used in both array indexing and indexed assignment. These logical arrays are often themselves called masks, but indexing is more like a "selection" operation than a clamping operation.
The suggestions in the comments are good, but you can also solve your problem using logical indexing with indexed assignment:
overLimitMask = someArray .> residualLimit
someArray[overLimitMask] = residualLimit
In this case, though, I think the most readable way to solve this problem is with min or clamp: min(someArray, residualLimit) or clamp(someArray, -residualLimit, residualLimit)

How to make nonsymbolic plot_vector_field in sage?

I have a function f(x,y) whose outcome is random (I take mean from 20 random numbers depending on x and y). I see no way to modify this function to make it symbolic.
And when I run
x,y = var('x,y')
d = plot_vector_field((f(x),x), (x,0,1), (y,0,1))
it says it can't cast symbolic expression to real or rationa number. In fact it stops when I write:
a=matrix(RR,1,N)
a[0]=x
What is the way to change this variable to real numbers in the beginning, compute f(x) and draw a vector field? Or just draw a lot of arrows with slope (f(x),x)?
I can create something sort of like yours, though with no errors. At least it doesn't do what you want.
def f(m,n):
return m*randint(100,200)-n*randint(100,200)
var('x,y')
plot_vector_field((f(x,y),f(y,x)),(x,0,1),(y,0,1))
The reason is because Python functions immediately evaluate - in this case, f(x,y) was 161*x - 114*y, though that will change with each invocation.
My suspicion is that your problem is similar, the immediate evaluation of the Python function once and for all. Instead, try lambda functions. They are annoying but very useful in this case.
var('x,y')
plot_vector_field((lambda x,y: f(x,y), lambda x,y: f(y,x)),(x,0,1),(y,0,1))
Wow, I now I have to find an excuse to show off this picture, cool stuff. I hope your error ends up being very similar.

Count negative numbers in list using list comprehension

Working through the first edition of "Introduction to Functional Programming", by Bird & Wadler, which uses a theoretical lazy language with Haskell-ish syntax.
Exercise 3.2.3 asks:
Using a list comprehension, define a function for counting the number
of negative numbers in a list
Now, at this point we're still scratching the surface of lists. I would assume the intention is that only concepts that have been introduced at that point should be used, and the following have not been introduced yet:
A function for computing list length
List indexing
Pattern matching i.e. f (x:xs) = ...
Infinite lists
All the functions and operators that act on lists - with one exception - e.g. ++, head, tail, map, filter, zip, foldr, etc
What tools are available?
A maximum function that returns the maximal element of a numeric list
List comprehensions, with possibly multiple generator expressions and predicates
The notion that the output of the comprehension need not depend on the generator expression, implying the generator expression can be used for controlling the size of the generated list
Finite arithmetic sequence lists i.e. [a..b] or [a, a + step..b]
I'll admit, I'm stumped. Obviously one can extract the negative numbers from the original list fairly easily with a comprehension, but how does one then count them, with no notion of length or indexing?
The availability of the maximum function would suggest the end game is to construct a list whose maximal element is the number of negative numbers, with the final result of the function being the application of maximum to said list.
I'm either missing something blindingly obvious, or a smart trick, with a horrible feeling it may be the former. Tell me SO, how do you solve this?
My old -- and very yellowed copy of the first edition has a note attached to Exercise 3.2.3: "This question needs # (length), which appears only later". The moral of the story is to be more careful when setting exercises. I am currently finishing a third edition, which contains answers to every question.
By the way, did you answer Exercise 1.2.1 which asks for you to write down all the ways that
square (square (3 + 7)) can be reduced to normal form. It turns out that there are 547 ways!
I think you may be assuming too many restrictions - taking the length of the filtered list seems like the blindingly obvious solution to me.
An couple of alternatives but both involve using some other function that you say wasn't introduced:
sum [1 | x <- xs, x < 0]
maximum (0:[index | (index, ()) <- zip [1..] [() | x <- xs, x < 0]])

prolog recursion

am making a function that will send me a list of all possible elemnts .. in each iteration its giving me the last answer .. but after the recursion am only getting the last answer back .. how can i make it give back every single answer ..
thank you
the problem is that am trying to find all possible distributions for a list into other lists .. the code
addIn(_,[],Result,Result).
addIn(C,[Element|Rest],[F|R],Result):-
member( Members , [F|R]),
sumlist( Members, Sum),
sumlist([Element],ElementLength),
Cap is Sum + ElementLength,
(Cap =< Ca,
append([Element], Members,New)....
by calling test .. am getting back all the list of possible answers .. now if i tried to do something that will fail like
bp(3,11,[8,2,4,6,1,8,4],Answer).
it will just enter a while loop .. more over if i changed the
bp(NB,C,OL,A):-
addIn(C,OL,[[],[],[]],A);
bp(NB,C,_,A).
to and instead of Or .. i get error :
ERROR: is/2: Arguments are not
sufficiently instantiated
appreciate the help ..
Thanks alot #hardmath
It sounds like you are trying to write your own version of findall/3, perhaps limited to a special case of an underlying goal. Doing it generally (constructing a list of all solutions to a given goal) in a user-defined Prolog predicate is not possible without resorting to side-effects with assert/retract.
However a number of useful special cases can be implemented without such "tricks". So it would be helpful to know what predicate defines your "all possible elements". [It may also be helpful to state which Prolog implementation you are using, if only so that responses may include links to documentation for that version.]
One important special case is where the "universe" of potential candidates already exists as a list. In that case we are really asking to find the sublist of "all possible elements" that satisfy a particular goal.
findSublist([ ],_,[ ]).
findSublist([H|T],Goal,[H|S]) :-
Goal(H),
!,
findSublist(T,Goal,S).
findSublist([_|T],Goal,S) :-
findSublist(T,Goal,S).
Many Prologs will allow you to pass the name of a predicate Goal around as an "atom", but if you have a specific goal in mind, you can leave out the middle argument and just hardcode your particular condition into the middle clause of a similar implementation.
Added in response to code posted:
I think I have a glimmer of what you are trying to do. It's hard to grasp because you are not going about it in the right way. Your predicate bp/4 has a single recursive clause, variously attempted using either AND or OR syntax to relate a call to addIn/4 to a call to bp/4 itself.
Apparently you expect wrapping bp/4 around addIn/4 in this way will somehow cause addIn/4 to accumulate or iterate over its solutions. It won't. It might help you to see this if we analyze what happens to the arguments of bp/4.
You are calling the formal arguments bp(NB,C,OL,A) with simple integers bound to NB and C, with a list of integers bound to OL, and with A as an unbound "output" Answer. Note that nothing is ever done with the value NB, as it is not passed to addIn/4 and is passed unchanged to the recursive call to bp/4.
Based on the variable names used by addIn/4 and supporting predicate insert/4, my guess is that NB was intended to mean "number of bins". For one thing you set NB = 3 in your test/0 clause, and later you "hardcode" three empty lists in the third argument in calling addIn/4. Whatever Answer you get from bp/4 comes from what addIn/4 is able to do with its first two arguments passed in, C and OL, from bp/4. As we noted, C is an integer and OL a list of integers (at least in the way test/0 calls bp/4).
So let's try to state just what addIn/4 is supposed to do with those arguments. Superficially addIn/4 seems to be structured for self-recursion in a sensible way. Its first clause is a simple termination condition that when the second argument becomes an empty list, unify the third and fourth arguments and that gives "answer" A to its caller.
The second clause for addIn/4 seems to coordinate with that approach. As written it takes the "head" Element off the list in the second argument and tries to find a "bin" in the third argument that Element can be inserted into while keeping the sum of that bin under the "cap" given by C. If everything goes well, eventually all the numbers from OL get assigned to a bin, all the bins have totals under the cap C, and the answer A gets passed back to the caller. The way addIn/4 is written leaves a lot of room for improvement just in basic clarity, but it may be doing what you need it to do.
Which brings us back to the question of how you should collect the answers produced by addIn/4. Perhaps you are happy to print them out one at a time. Perhaps you meant to collect all the solutions produced by addIn/4 into a single list. To finish up the exercise I'll need you to clarify what you really want to do with the Answers from addIn/4.
Let's say you want to print them all out and then stop, with a special case being to print nothing if the arguments being passed in don't allow a solution. Then you'd probably want something of this nature:
newtest :-
addIn(12,[7, 3, 5, 4, 6, 4, 5, 2], Answer),
format("Answer = ~w\n",[Answer]),
fail.
newtest.
This is a standard way of getting predicate addIn/4 to try all possible solutions, and then stop with the "fall-through" success of the second clause of newtest/0.
(Added) Suggestions about coding addIn/4:
It will make the code more readable and maintainable if the variable names are clear. I'd suggest using Cap instead of C as the first argument to addIn/4 and BinSum when you take the sum of items assigned to a "bin". Likewise Bin would be better where you used Members. In the third argument to addIn/4 (in the head of the second clause) you don't need an explicit list structure [F|R] since you never refer to either part F or R by itself. So there I'd use Bins.
Some of your predicate calls don't accomplish much that you cannot do more easily. For example, your second call to sumlist/2 involves a list with one item. Thus the sum is just the same as that item, i.e. ElementLength is the same as Element. Here you could just replace both calls to sumlist/2 with one such call:
sumlist([Element|Bin],BinSum)
and then do your test comparing BinSum with Cap. Similarly your call to append/3 just adjoins the single item Element to the front of the list (I'm calling) Bin, so you could just replace what you have called New with [Element|Bin].
You have used an extra pair of parentheses around the last four subgoals (in the second clause for addIn/4). Since AND is implied for all the subgoals of this clause, using the extra pair of parentheses is unnecessary.
The code for insert/4 isn't shown now, but it could be a source of some unintended "backtracking" in special cases. The better approach would be to have the first call (currently to member/2) be your only point of indeterminacy, i.e. when you choose one of the bins, do it by replacing it with a free variable that gets unified with [Element|Bin] at the next to last step.

Resources