Related
I am trying to make some violin plots with ggplot using this dataframe
df = structure(list(nid.weight = c(2.46, 0.319, 1.169, 1.631, 2.03,
0.148, 0.252, 5.614, 2.557, 6.062, 2.939, 6.04, 18.858, 28.727,
18.3, 9.831, 16.298, 17.176, 13.391, 15.044, 35.42, 5.421, 10.073,
15.499, 12.712, 16.046, 23.003, 11.656, 19.79, 20.593, 19.264,
26.35, 13.752, 31.795, 18.604, 18.871, 22.848, 34.46, 14.176,
20.73, 31.97, 18.7, 17.837, 15.875, 14.44, 38.78, 14.595, 21.522,
13.041, 18.051, 20.748, 17.91, 14.831, 9.523, 9.865, 38.2, 19.531,
25.724, 16.208, 18.059, 14.98, 11.9, 14.9, 13, 16.3, 15.555,
0.031, 1.99, 8.924, 21.081, 30.12, 8.658, 0.078, 0.111, 0.373,
0.217, 0.276, 20.993, 12.936, 0.142, 0.188, 0.154, 0.182, 0.14,
0.172, 0.123, 0.187, 0.104, 17.903, 0.18, 21.026, 0.124, 0.108,
21.394, 0.14, 0.189, 0.173, 0.271, 0.124, 0.122, 0.097, 0.16,
8.087, 0.107, 0.149, 0.072, 16.732, 12.663, 0.268, 0.268, 0.315,
0.277, 0.154, 0.233, 0.323, 14.043, 0.424, 0.296, 0.531, 0.287,
0.45, 0.248, 0.475, 0.726, 0.379, 0.623, 0.257, 0.558, 0.34,
13.687, 0.722, 14.936, 0.243, 0.731, 0.216, 0.4, 0.476, 0.114,
1.46, 0.861, 0.861, 1.64, 0.655, 1.096, 0.649, 0.789, 1.083,
1.072, 1.748, 1.404, 0.721, 1.026, 0.305, 0.59, 0.929, 0.937,
1.984, 1.078, 1.632, 3.373, 2.183, 0.546, 2.745, 2.598, 0.789,
0.925, 0.636, 1.184, 1.171, 1, 1.229, 1.503, 1.172, 1.89, 0.946,
0.641, 0.701, 0.228, 0.169, 0.389, 0.894, 3.299, 1.491, 3.022,
1.395, 1.472, 0.7, 1.195, 0.865, 2.414, 0.442, 1.282, 1.228,
1.403, 0.655, 1.34, 2.014, 1.612, 1.08, 0.326, 1.131, 1.133,
1.362, 2.424, 0.565, 0.67, 1.04, 0.997, 1.022, 0.48, 0.837, 0.746,
0.483, 0.696, 0.934, 1.105, 0.86, 0.75, 0.82, 0.48, 2.437, 0.372,
0.234, 0.099, 0.051, 2.716, 0.621, 0.611, 0.384, 0.82, 0.646,
0.68, 0.768, 0.378, 0.305, 2.462, 2.185, 0.598, 1.529, 2.175,
5.242, 7.084, 0.105, 1.29, 1.154, 2.961, 6.741, 1.742, 1.632,
3.47, 1.232, 2.359, 0.111, 1.638, 2.38, 1.162, 5.291, 1.114,
0.487, 0.874, 0.564, 1.318, 5.55, 7.685, 2.543, 0.401, 6.578,
7.53, 7.89, 3.312, 2.555, 0.233, 7.749, 1.289, 0.94, 0.839, 3.408,
6.603, 10.832, 7.353, 8.789, 5.352, 8.341, 3.897, 21.308, 16.963,
14.393, 3.852, 26.156, 21.705, 8.573, 9.504, 8.813, 2.458, 2.22,
32.4, 10.468, 7.66, 18.072, 2.135, 20.67, 4.79, 15.467, 8.484,
4.28, 13.36, 3.515, 7.835, 9.168, 2.443, 4.076, 9.953, 3.515,
5.206, 11.493, 3.059, 5.311, 7.07, 0.045, 5.309, 0.52, 9.56,
19.989, 36.894, 30.305, 21.25, 20.387, 10.685, 26.185, 0.404,
25.427, 5.755, 16.112, 14.832, 16.072, 14.835, 7.67, 8.717, 17.025,
19.564, 30.922, 0.049, 0.632, 0.415, 6.621, 13.701, 21.269, 17.527,
18.9, 16.574, 22.877, 28.866, 27.756, 7.535, 13.557, 19.082,
8.287, 18.617, 17.219, 14.733, 14.484, 12.481, 6.201, 35.361,
19.888, 24.468, 19.198, 29.679, 22.218, 29.408, 36.102, 23.984,
13.494, 30.313, 18.847, 0.731, 6.166, 28.418, 17.481, 20.235,
31.187, 26.49, 32.56, 14.459, 15.121, 2.385, 31.06, 14.626, 18.43,
9.808, 10.926, 10.1, 18.711, 26.396, 17.722, 12.006, 8.995, 17.874,
15.124, 10.318, 15.23, 22.661, 11.005, 6.016, 22.408, 7.561,
13.97, 8.252, 14.08, 10.254, 15.43, 25.756, 14.52, 9.588, 8.775,
29.909, 24.27, 10.459, 18.974, 11.11, 20.189, 16.73, 14.201,
28.025, 19.849, 20.307, 24.715, 10.688, 13.465, 15.817, 21.798,
19.616, 18.622, 12.703, 15.037, 24.377, 21.071, 10.81, 16.02,
15.576, 36.77, 21.363, 17.874, 19.724, 14.749, 9.152, 16.923,
0.065, 37.676, 25.147, 19.729, 18.345, 14.74, 14.938, 16.49,
20.211, 11.397, 15.34, 11.787, 12.373, 11.504, 10.563, 13.459,
12.091, 14.487, 7.769, 10.006, 9.041, 8.031, 9.05, 1.856, 3.405,
0.036, 12.772, 12.104, 8.282, 10.581, 4.867, 11.029, 10.558,
11.115, 16.303, 11.409, 12.732, 11.417, 11.352, 16.167, 23.197,
15.232, 17.714, 14.234, 23.325, 13.902, 13.66, 17.23, 15.176,
20.037, 15.751, 25.133, 15.217, 29.949, 24.001, 26.291, 39.325,
0.101, 0.148, 0.095, 0.194, 0.112, 0.07, 0.13, 0.096, 0.151,
15.518, 11.961, 19.033, 10.798, 0.114, 17.396), Fmaturity = structure(c(3L,
1L, 2L, 2L, 3L, 1L, 2L, 3L, 3L, 4L, 3L, 4L, 4L, 5L, 4L, 4L, 4L,
5L, 4L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 4L, 5L, 4L, 5L,
5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 4L, 5L, 4L, 4L, 4L, 4L, 4L, 5L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 1L, 2L, 5L, 4L, 5L, 4L, 1L, 1L, 2L, 2L, 2L, 5L, 5L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 2L, 2L, 5L, 2L, 5L, 2L, 2L, 5L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 4L, 2L, 2L, 2L, 4L, 5L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 3L, 2L, 2L, 2L,
4L, 3L, 4L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 1L, 2L, 2L, 2L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L,
3L, 2L, 2L, 2L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 5L, 3L, 3L, 3L, 4L,
4L, 3L, 4L, 4L, 2L, 2L, 4L, 5L, 3L, 5L, 2L, 4L, 2L, 4L, 3L, 3L,
4L, 3L, 3L, 3L, 3L, 2L, 4L, 2L, 3L, 4L, 3L, 3L, 3L, 1L, 3L, 2L,
5L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 2L, 5L, 3L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 4L, 4L, 1L, 2L, 2L, 3L, 4L, 5L, 5L, 4L, 5L, 4L, 5L, 4L,
4L, 5L, 5L, 3L, 4L, 4L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 4L,
4L, 4L, 5L, 4L, 5L, 4L, 2L, 3L, 5L, 5L, 5L, 5L, 4L, 5L, 4L, 5L,
2L, 5L, 4L, 4L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 4L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L,
5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 4L, 4L, 5L, 5L, 5L, 1L, 4L,
4L, 5L, 4L, 4L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 4L, 5L, 5L, 5L,
4L, 4L, 4L, 5L, 4L, 2L, 3L, 1L, 4L, 4L, 5L, 5L, 3L, 5L, 5L, 5L,
5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 4L, 5L, 4L, 4L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L,
5L, 5L, 5L, 4L, 2L, 4L), levels = c("1", "2", "3", "4", "5"), class = "factor")), class = "data.frame", row.names = c(NA,
-519L))
Starting out I tried using the simplest code
ggplot(df, aes(x=Fmaturity, y=nid.weight)) +
geom_violin()
But my violin graphs are really thin, and they don't seem to help me visualize the data. So I tried using
ggplot(squid, aes(x=Fmaturity, y=nid.weight)) +
geom_violin(scale = "width")
which made the plots wider, except for the first violin plot. And what I'm wondering is:
when I use scale = "width" is that changing the data that the graph is using. I don't want to manipulate the data, I just want to graph it so that I can see the violin plots
Is there a better way to show these violin plots so we can visualize the data at all stages? Can I make them wider without manipulating data?
With scale = "width" the violins are all the same width:
ggplot(df, aes(x=Fmaturity, y=nid.weight)) +
geom_violin(scale = "width")
but the first violin is squashed vertically because...that's just the range of the data. If you want to be able to see the details of each distribution then you need a log scale on the y axis:
ggplot(df, aes(x=Fmaturity, y=nid.weight)) +
geom_violin() +
scale_y_log10()
I'm trying to plot data from a study with three within-subjects (test item, frame, sample size) variables in ggplot. I have summarised and plotted test item on the x axis and have separate lines for sample size and have used facet_grid to separate the two frame conditions. The summarised this data to create within-subjects 95% CI error bars. I'd also like to underlay individual participant's lines. All the advice I have found so far doesn't explain how to plot individual and grouped data when you have facetted the data. Everything I have tried looks messy and doesn't clearly show individual's curves/lines.
Is there a way to do this?
I've considered splitting the data by the facetted conditions and plotting separately but if there is an easier way I would like to find it!
Here's a some of the data:
human_exp1 <- structure(list(sample_size = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("2", "8", "20"), class = "factor"),
sampling_frame = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L), .Label = c("category", "property"), class = "factor"),
test_item = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L
), .Label = c("1", "2", "3", "4", "5", "6"), class = "factor"),
id = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L), .Label = c("1",
"2", "3", "4", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "31", "32", "33",
"34", "35", "36", "37", "38", "39", "40", "41", "42", "43",
"44", "45", "46", "47", "48", "49", "50", "85", "86", "87",
"88", "89", "90", "91", "92", "93", "94", "95", "96"), class = "factor"),
response = c(0.75, 0.25, 0.4, 0.5, 0.3, 0.55, 0.65, 0.4,
0.3, 0.5, 0, 0.15, 0.65, 0.65, 0.5, 0.65, 0.8, 0.65, 0.65,
0.75, 0.15, 0.35, 0.6, 0.15, 0.3, 0.5, 0.1, 0.3, 0.5, 0,
0.25, 0.45, 0.75, 0.7, 0.45, 0.65, 0.75, 0.75, 0.3, 0.1,
0.25, 0.15, 0.2, 0.3, 0.35, 0.05, 0.3, 0.5, 0, 0.15, 0.5,
0.1, 0.35, 0.25, 0.5, 0.5, 0, 0.25, 0, 0.3, 0.1, 0.15, 0.35,
0.2, 0, 0.3, 0.5, 0, 0.1, 0.5, 0, 0.3, 0.1, 0.7, 0.45, 0,
0.25, 0, 0.35, 0.1, 0.15, 0.3, 0.1, 0, 0.2, 0.25, 0, 0.1,
0.5, 0, 0.15, 0.3, 0.7, 0.4, 0, 0.05, 0.1, 0.3, 0.1, 0, 0.3,
0.05, 0, 0.25, 0.25, 0, 0.15, 0.5, 0, 0.1, 0, 0.75, 0.6,
0, 0.75, 0.3, 0.9, 0.3, 0.2, 0.95, 0.6, 0.7, 0.6, 0.5, 0,
0, 0.5, 0.9, 0.8, 0.9, 0.75, 0.7, 0.8, 0.5, 0.25, 0.1, 0.05,
0, 0.65, 0.5, 0.3, 0.8, 0.5, 0, 0, 0.5, 0.4, 0.85, 0.5, 0.55,
0.55, 0.35, 0.3, 0.2, 0.15, 0.05, 0, 0.3, 0.15, 0.05, 0.45,
0.5, 0, 0, 0.5, 0.45, 0.55, 0.3, 0.35, 0.4, 0.3, 0.15, 0.2,
0.15, 0, 0, 0.3, 0.1, 0, 0.3, 0.5, 0, 0, 0.5, 0.35, 0.35,
0.25, 0.3, 0.5, 0.35, 0.05, 0.2, 0, 0, 0.05, 0.3, 0.05, 0,
0.3, 0.5, 0, 0, 0.5, 0, 0.55, 0, 0.3, 0.35, 0.2, 0.1, 0.2,
0, 0, 0, 0.3, 0.05, 0, 0.25, 0.5, 0, 0, 0.5, 0, 0.55, 0,
0.25, 0.5, 0.25, 0.8, 0.4, 0.75, 0.7, 0.45, 0.95, 0.85, 0.55,
0.7, 0.5, 0, 0.5, 0.8, 0.8, 0.95, 1, 0.8, 0.7, 1, 0.9, 0.2,
0.7, 0.75, 0.25, 0.7, 0.6, 1, 0.7, 0.5, 0, 1, 0.8, 0.9, 0.8,
0.75, 0.8, 0.85, 1, 0.25, 0.1, 0.2, 0.15, 0.25, 0.6, 0.2,
0, 0.45, 0.5, 0, 0.5, 0.7, 0.35, 0.45, 0.25, 0.75, 0.4, 0.2,
0.1, 0.15, 0.65, 0.1, 0.2, 0.55, 0.05, 0, 0.4, 0.5, 0, 0.5,
0.6, 0.35, 0.35, 0, 0.7, 0.45, 0, 0.1, 0.15, 0.15, 0.15,
0.05, 0.55, 0, 0, 0.35, 0.25, 0, 0.5, 0.55, 0.35, 0.2, 0,
0.8, 0.45, 0, 0.05, 0, 0.6, 0.25, 0.1, 0.5, 0, 0, 0.35, 0.25,
0, 0.5, 0.45, 0.35, 0.2, 0, 0.75, 0.4, 0.1, 0.9, 0.5, 0.95,
0.55, 0.4, 1, 0.65, 0.75, 0.6, 0.5, 0, 0.5, 0.75, 0.85, 0.95,
0.9, 0.6, 0.85, 0.75, 0.5, 0.5, 0.95, 0.3, 0.3, 0.55, 0.45,
0.35, 0.9, 0.5, 0, 0, 0.25, 0.65, 0.9, 0.25, 0.75, 0.65,
0.25, 0.2, 0.2, 0.1, 0.05, 0, 0.1, 0.15, 0.05, 0.4, 0.5,
0, 0, 0.45, 0.4, 0.55, 0.1, 0.5, 0.5, 0.2, 0.1, 0.2, 0.4,
0, 0, 0.1, 0.05, 0, 0.2, 0.5, 0, 0, 0.35, 0.35, 0.55, 0.1,
0.35, 0.4, 0.15, 0.1, 0.2, 0, 0, 0, 0.05, 0, 0, 0.2, 0.5,
0, 0, 0.15, 0, 0.55, 0, 0.2, 0.45, 0.15, 0.05, 0.25, 0, 0,
0, 0.05, 0, 0, 0.2, 0.5, 0, 0, 0.3, 0, 0.55, 0, 0.3, 0.35,
0.05, 0.8, 0.15, 0.8, 0.8, 0.75, 1, 0.7, 0.5, 0.95, 0.5,
0, 0.5, 0.9, 0.85, 1, 1, 1, 0.8, 1, 1, 0.15, 0.75, 0.8, 0.4,
1, 0.5, 1, 0.85, 0.5, 0, 1, 0.85, 1, 0.85, 0.9, 0.9, 0.85,
1, 0.1, 0, 0.25, 0.3, 0.4, 0.65, 0, 0, 0.6, 0.5, 0, 0, 0.75,
0.65, 0.65, 0.45, 0.7, 0.5, 0, 0.1, 0, 0.2, 0.3, 0.4, 1,
0, 0, 0.6, 0.5, 0, 0, 0.7, 0.35, 0.55, 0, 0.85, 0.3, 0, 0.1,
0, 0.25, 0.25, 0.1, 0.65, 0, 0, 0.65, 0.25, 0, 0, 0.65, 0.35,
0.3, 0.05, 0.85, 0.3, 0, 0.05, 0, 0.15, 0.25, 0.1, 0.5, 0,
0, 0.45, 0.25, 0, 0, 0.6, 0.35, 0.3, 0, 0.65, 0.25, 0, 0.95,
0.6, 1, 0.75, 0.65, 0.5, 0.55, 0.9, 0.8, 0.5, 0, 1, 0.9,
0.95, 1, 0.95, 0.5, 0.85, 0.8, 0.5, 0.55, 0.95, 0.45, 0.55,
0.5, 0.4, 0.35, 0.8, 0.5, 0, 0, 0.35, 0.65, 1, 0.45, 0.5,
0.55, 0.25, 0.15, 0.3, 0.25, 0.15, 0, 0, 0, 0, 0.35, 0.5,
0, 0, 0.4, 0.35, 0.5, 0.05, 0.25, 0.4, 0, 0.05, 0.2, 0.45,
0, 0, 0, 0, 0, 0.25, 0.5, 0, 0, 0.3, 0.35, 0.5, 0, 0, 0.35,
0, 0.05, 0.25, 0, 0, 0, 0, 0, 0, 0.15, 0.5, 0, 0, 0.15, 0,
0.5, 0, 0, 0.3, 0, 0.05, 0.25, 0, 0, 0, 0, 0, 0, 0.2, 0.5,
0, 0, 0.15, 0, 0.5, 0, 0, 0.35, 0)), row.names = c(NA, -684L
), class = c("tbl_df", "tbl", "data.frame"))
I used summarySEwithin to summarise the data:
within <- Rmisc::summarySEwithin(data = human_exp1, measurevar = "response",
withinvars = c("sample_size", "sampling_frame", "test_item"),
idvar = "id")
I used the summarised data to plot the group means in ggplot. Particularly so I could compute within-ss confidence intervals for the means.
pd <- position_dodge(0.1)
ggplot(within, aes(x=test_item, y=response, colour=factor(sample_size), group=factor(sample_size)))+
geom_point(position=pd, size=5)+
geom_line(position=pd, size = .8)+
facet_grid(cols = vars(sampling_frame))+
geom_errorbar(aes(ymin=response-ci, ymax=response+ci), width=1, position=pd, size=1)+
ylim(0, 1)+
theme_bw()+
scale_x_discrete(
breaks=c("1","2","3", "4", "5", "6"),
labels=c("S1", "S2", "T1", "T2", "T3", "T4")
)+
# theme(legend.position = c(.9, .85))+
labs(x = "Test Item", y = "Generalisation Response")
I then summarised the data and grouped by all the grouping variables including id
gd <- human %>%
group_by(id, test_item, sample_size, sampling_frame) %>%
summarise(response = mean(response))%>%
ungroup()
gd
I then tried many different versions of geom_line() with the gd summarised data to add individual lines.
Any help would be much appreciated. I would like the individual lines to appear as faint grey lines behind the group mean lines.
Here is what I have with the within-subjects grouped data
Here is what I get when I try to add individual lines with geom_line(data = human, aes(x=test_item, y=response, group=id))
Is this what you want? I grouped the individual lines by both id and sample_size to get single lines:
ggplot(within, aes(x=test_item, y=response, colour=factor(sample_size), group=factor(sample_size)))+
geom_point(position=pd, size=5)+
geom_line(position=pd, size = .8)+
facet_grid(cols = vars(sampling_frame))+
geom_errorbar(aes(ymin=response-ci, ymax=response+ci), width=1, position=pd, size=1)+
ylim(0, 1)+
theme_bw()+
scale_x_discrete(
breaks=c("1","2","3", "4", "5", "6"),
labels=c("S1", "S2", "T1", "T2", "T3", "T4")
)+
# theme(legend.position = c(.9, .85))+
labs(x = "Test Item", y = "Generalisation Response") +
geom_line(data=human_exp1, alpha=0.2, color="black", aes(x=test_item, Y=response, group=interaction(id,sample_size)))
Is this what you are lookong for?
library(dplyr)
library(ggplot2)
within %>%
ungroup() %>%
group_by(test_item, sample_size) %>%
summarise(mean = mean(response), ci = sd(response)) -> smry
pd <- "jitter"
ggplot(within, aes(x = test_item, y = response)) +
geom_point(aes(colour = sample_size), position = pd) +
geom_errorbar(
data = smry,
mapping = aes(y = mean, ymin = mean - ci, ymax = mean + ci),
size = 1
)+
facet_grid(cols = vars(sampling_frame)) +
ylim(0, 1) +
scale_x_discrete(
breaks = c("1","2","3", "4", "5", "6"),
labels = c("S1", "S2", "T1", "T2", "T3", "T4")
) +
labs(x = "Test Item", y = "Generalisation Response") +
theme_bw()
# theme(legend.position = c(.9, .85))+
I would like to know if there is a way to more elegantly rewrite this piece of script. I have tried case_when but it throws an error message when I try to have several of them within one mutate function. Here is the dput for the file
structure(list(todays_date = structure(c(1L, 1L, 1L, 1L, 2L,
2L, 4L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 1L, 1L, 2L, 2L, 3L, 3L, 2L, 2L, 3L, 3L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 2L, 4L, 4L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 4L, 4L, 5L, 5L, 5L, 2L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 8L, 9L, 9L,
9L, 9L), .Label = c("04/11/2019", "05/11/2019", "06/11/2019",
"07/11/2019", "08/11/2019", "12/11/2019", "13/11/2019", "14/11/2019",
"15/11/2019"), class = "factor"), p_initials = structure(c(34L,
54L, 1L, 71L, 16L, 77L, NA, 55L, 56L, 122L, 20L, 53L, 116L, 48L,
36L, 14L, 44L, 55L, 89L, 96L, 105L, 83L, 92L, 98L, 38L, 5L, 70L,
47L, 10L, 10L, 107L, 67L, 70L, 24L, 25L, 32L, 65L, 24L, 124L,
87L, 75L, 80L, 26L, 31L, 112L, 40L, 45L, 117L, 10L, 23L, 11L,
69L, 7L, 8L, 6L, 79L, 81L, 46L, 108L, 13L, 3L, 61L, 82L, 65L,
90L, 102L, 101L, 59L, 93L, 70L, 74L, 29L, 62L, 78L, 67L, 13L,
64L, 119L, 22L, 43L, 10L, 38L, 50L, 104L, 3L, 2L, 125L, 13L,
88L, 4L, 96L, 106L, 84L, 109L, 17L, 74L, 10L, 91L, 63L, 89L,
7L, 120L, 12L, 38L, 95L, 27L, 9L, 86L, 42L, 99L, 70L, 110L, 103L,
74L, 111L, 72L, 85L, 68L, 76L, 73L, 70L, 21L, 77L, 37L, 8L, 66L,
70L, 123L, 94L, 61L, 115L, 25L, 120L, 67L, 119L, 19L, 71L, 21L,
34L, 57L, 42L, 57L, 100L, 18L, 30L, 19L, 105L, 113L, 39L, 60L,
15L, 33L, 95L, 121L, 52L, 97L, 102L, 5L, 58L, 81L, 114L, 119L,
28L, 3L, 7L, 51L, 35L), .Label = c("BA", "BB", "BD", "BE", "BH",
"BI", "BM", "BS", "BY", "CA", "CB", "CD", "CE", "CF", "CG", "CGA",
"CGG", "CI", "CK", "CL", "CM", "CO", "CP", "CS", "CT", "CZ",
"DK", "DO", "DPH", "DT", "GA", "GB", "GG", "IA", "IB", "Ik",
"IK", "IM", "IP", "IS", "ITF", "KA", "KB", "KBA", "KF", "KG",
"KJ", "KK", "KM", "KO", "KP", "KR", "KS", "KY", "NB", "ND", "NF",
"NG", "NI", "NJ", "NK", "NKD", "NL", "NM", "NR", "NRBS", "NT",
"NWD", "NY", "OA", "OB", "OC", "OD", "OH", "OHD", "OI", "OJ",
"OK", "OL", "OM", "OP", "OPI", "OS", "OSP", "OT", "OTL", "PR",
"PS", "SA", "SG", "SH", "SJ", "SLP", "SM", "SP", "SS", "TA",
"TBC", "TE", "TG", "TKP", "TM", "TMB", "TP", "TR", "TS", "WJ",
"WR", "YH", "YKI", "YM", "ZA", "ZB", "ZE", "ZH", "ZK", "ZM",
"ZN", "ZP", "ZS", "ZSS", "ZT", "ZTM", "ZTN", "ZZ"), class = "factor"),
village = structure(c(2L, 2L, 2L, 2L, 3L, 3L, 8L, 1L, 1L,
1L, 8L, 8L, 8L, 8L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 1L, 1L, 1L,
8L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L, 2L,
2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 1L, 1L, 1L,
1L, 8L, 8L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 2L,
2L, 7L, 7L, 7L, 4L, 4L, 4L, 7L, 7L, 6L, 6L, 6L, 6L, 1L, 1L,
1L, 1L, 7L, 7L, 7L, 8L, 8L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 1L, 4L, 4L, 4L, 4L, 3L, 6L, 6L, 8L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 1L, 1L, 1L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 8L, 8L, 8L, 8L, 8L, 1L, 1L, 4L, 2L, 3L,
3L, 3L, 3L, 2L, 2L, 2L, 7L, 7L), .Label = c("banembanto",
"bankore", "damzoussi", "pissy", "sabsin", "tanghin", "toundou",
"watenga"), class = "factor"), compound_id = c("40080", "40093",
"40113", "040127", "240043", "240060", "250035", "230047",
"230033", "230049", "250014", "250031", "250002", "250051",
"220040", "220080", "250056", "250045", "250061", "250042",
"250811", "230068", "230104", "230144", "250062", "40144",
"40814", "030015", "030022", "030108", "30156", "30001",
"30002", "30052", "30089", "30069", "30083", "030094", "30144",
"30161", "30192", "30004", "030006", "030025", "30055", "30202",
"30205", "30239", "30259", "30809", "40053", "40086", "40109",
"040116", "40823", "30197", "30216", "30237", "30159", "30167",
"30219", "30223", "260041", "260803", "260055", "260015",
"230098", "230102", "230111", "230145", "250805", "250810",
"260004", "260023", "260032", "240065", "260025", "260075",
"260049", "30012", "030023", "030030", "30057", "40055",
"40118", "80044", "80068", "80075", "30203", "30229", "30238",
"80001", "80007", "220041", "220042", "220022", "220083",
"230115", "230048", "230097", "230072", "80055", "80803",
"80807", "250809", "250806", "220034", "220019", "220064",
"220840", "220001", "220118", "220175", "220834", "220070",
"220099", "220098", "220141", "220805", "220849", "230174",
"030110", "30146", "30190", "30215", "240006", "220097",
"220823", "250016", "240010", "240042", "240049", "240080",
"240073", "240067", "30265", "30822", "30823", "240004",
"230040", "230057", "230078", "230158", "240021", "240053",
"240054", "240064", "240066", "240086", "250009", "250028",
"250039", "250053", "250063", "230150", "230164", "30828",
"40094", "240007", "240013", "240071", "240078", "040018",
"040125", "40147", "80034", "80049"), new_compound_id = c(40080L,
NA, NA, NA, NA, NA, NA, NA, 230033L, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, 30156L, NA, NA, 30052L, NA, NA, NA, NA, NA, NA, 30192L,
NA, NA, NA, NA, 30202L, NA, NA, NA, NA, 40053L, NA, NA, NA,
NA, 30197L, 30216L, 30237L, NA, NA, 30219L, 30223L, NA, NA,
260055L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
260075L, 260049L, NA, NA, NA, NA, NA, NA, NA, 80068L, NA,
30203L, 30229L, NA, NA, 80007L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, 220840L, NA, NA, NA,
NA, NA, NA, NA, NA, 220805L, NA, NA, NA, NA, 30190L, NA,
NA, NA, NA, 250016L, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, 30828L, 40094L, NA, NA, NA, NA, NA, NA, NA, NA,
NA), num_sleep_space = c(2L, 3L, 2L, 2L, 3L, 4L, 2L, 3L,
6L, 4L, 8L, 5L, 1L, 2L, 4L, 4L, 3L, 6L, 3L, 10L, 2L, 3L,
9L, 8L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
2L, 3L, 4L, 2L, 2L, 3L, 2L, 3L, 3L, 2L, 3L, 2L, 3L, 2L, 2L,
2L, 3L, 3L, 5L, 5L, 3L, 3L, 2L, 5L, 4L, 3L, 2L, 4L, 3L, 4L,
3L, 4L, 5L, 2L, 2L, 3L, 5L, 3L, 5L, 4L, 3L, 2L, 4L, 3L, 4L,
4L, 5L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 2L,
2L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, 3L, 7L, 2L, 3L, 2L, 4L, 3L,
3L, 3L, 2L, 3L, 4L, 3L, 3L, 2L, 5L, 4L, 4L, 4L, 4L, 2L, 3L,
2L, 4L, 1L, 2L, 1L, 5L, 5L, 1L, 4L, 3L, 3L, 4L, 4L, 4L, 6L,
8L, 8L, 9L, 7L, 7L, 3L, 7L, 3L, 4L, 4L, 4L, 2L, 10L, 12L,
4L, 4L, 10L, 5L, 3L, 8L, 4L, 5L, 4L, 3L, 3L), receive_new_net = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = "yes", class = "factor"), note_net_type.num_net_given = c(2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 6L, 4L, 6L, 7L, 1L, 3L, 3L, 3L,
3L, 5L, 4L, 4L, 3L, 2L, 4L, 3L, 3L, 6L, 5L, 3L, 3L, 2L, 2L,
3L, 3L, 6L, 3L, 4L, 2L, 3L, 4L, 4L, 4L, 3L, 4L, 3L, 3L, 4L,
3L, 4L, 4L, 4L, 2L, 3L, 3L, 4L, 3L, 5L, 3L, 3L, 3L, 1L, 3L,
3L, 5L, 5L, 3L, 4L, 4L, 3L, 4L, 3L, 3L, 3L, 3L, 5L, 1L, 3L,
4L, 3L, 2L, 4L, 3L, 4L, 4L, 5L, 4L, 3L, 3L, 2L, 2L, 3L, 3L,
3L, 2L, 1L, 1L, 3L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 3L, 3L,
7L, 2L, 3L, 2L, 4L, 3L, 3L, 3L, 2L, 3L, 4L, 4L, 3L, 2L, 4L,
4L, 4L, 4L, 4L, 2L, 3L, 2L, 4L, 2L, 2L, 2L, 5L, 5L, 1L, 4L,
3L, 3L, 6L, 4L, 3L, 5L, 6L, 6L, 5L, 7L, 6L, 3L, 8L, 5L, 4L,
5L, 5L, 4L, 10L, 15L, 4L, 4L, 8L, 5L, 3L, 7L, 4L, 5L, 4L,
3L, 3L), note_net_type.date_new_net = structure(c(2L, 2L,
2L, 2L, 14L, 11L, 14L, 12L, 12L, 14L, 14L, 12L, 14L, 14L,
11L, 12L, 21L, 14L, 21L, 11L, 21L, 14L, 11L, 11L, 15L, 2L,
2L, 8L, 10L, 9L, 9L, 22L, 21L, 23L, 23L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 7L,
6L, 21L, 2L, 2L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
12L, 14L, 14L, 12L, 15L, 17L, 11L, 16L, 14L, 14L, 11L, 14L,
21L, 2L, 2L, 2L, 2L, 2L, 4L, 21L, 9L, 9L, 23L, 23L, 23L,
23L, 23L, 14L, 1L, 14L, 14L, 14L, 13L, 14L, 14L, 4L, 4L,
4L, 21L, 21L, 21L, 21L, 21L, 9L, 21L, 21L, 21L, 21L, 21L,
21L, 23L, 23L, 23L, 23L, 23L, 4L, 4L, 4L, 4L, 14L, 12L, 16L,
18L, 14L, 14L, 14L, 23L, 23L, 14L, 4L, 4L, 2L, 14L, 12L,
14L, 14L, 14L, 16L, 12L, 12L, 14L, 12L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 18L, 4L, 2L, 19L, 19L, 16L, 20L, 2L, 3L, 5L,
2L, 2L), .Label = c("12/07/2019", "15/06/2019", "15/07/2019",
"16/06/2019", "16/07/2019", "17/06/2019", "17/10/2019", "18/06/2019",
"19/06/2019", "20/06/2019", "20/07/2019", "21/07/2019", "22/06/2019",
"22/07/2019", "23/06/2019", "23/07/2019", "24/06/2019", "24/07/2019",
"25/06/2019", "25/07/2019", "29/06/2019", "29/10/2019", "30/06/2019"
), class = "factor"), note_net_type.brand_net_given = structure(c(6L,
6L, 6L, 6L, 6L, 6L, 6L, 9L, 9L, 9L, 9L, 9L, 2L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 5L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 1L, 6L, 9L, 9L, 6L, 12L, 1L, 11L, 12L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 8L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 4L, 7L, 3L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 4L, 7L, 6L, 12L, 13L, 12L, 6L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 7L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 12L, 12L, 7L, 7L, 1L, 12L, 12L, 12L,
10L, 7L, 5L, 7L, 7L), .Label = c("", "Pema.net", "PERMA .NET",
"PERMA,NET", "PERMA. NET", "Perma.net", "PERMA.NET", "Perman.net",
"Permanet", "PERMANET", "Permanet.2", "PERMANET.2", "PERMANT.2"
), class = "factor"), note_net_type.help_hang_net = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L), .Label = c("no", "yes"), class = "factor"), net_shape = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = "rectangular", class = "factor"), other_net_shape = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA), num_old_net = c(2L, 3L, 2L, 2L, 4L, 6L, 3L, 3L, 4L,
2L, 4L, 5L, 1L, 3L, 6L, 4L, 3L, 2L, 4L, 4L, 3L, 1L, 4L, 4L,
3L, 0L, 2L, 0L, 1L, 3L, 2L, 3L, 2L, 3L, 2L, 5L, 4L, 3L, 6L,
6L, 4L, 5L, 6L, 4L, 6L, 5L, 6L, 6L, 5L, 4L, 4L, 4L, 3L, 6L,
6L, 3L, 3L, 3L, 2L, 1L, 3L, 3L, 4L, 3L, 4L, 4L, 3L, 4L, 6L,
5L, 1L, 3L, 4L, 5L, 4L, 5L, 0L, 0L, 2L, 4L, 3L, 4L, 4L, 5L,
4L, 2L, 3L, 2L, 2L, 3L, 3L, 3L, 2L, 1L, 3L, 2L, 2L, 2L, 2L,
3L, 2L, 5L, 4L, 5L, 3L, 3L, 7L, 2L, 3L, 2L, 3L, 3L, 3L, 3L,
2L, 3L, 4L, 2L, 3L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 3L, 2L,
4L, 2L, 2L, 5L, 5L, 1L, 4L, 3L, 3L, 5L, 3L, 4L, 5L, 7L, 7L,
7L, 7L, 8L, 3L, 7L, 5L, 3L, 3L, 4L, 3L, 9L, 8L, 4L, 4L, 6L,
4L, 1L, 1L, 4L, 5L, 4L, 3L, 3L), num_hh_members = c(4L, 5L,
4L, 3L, 4L, 6L, 5L, 6L, 7L, 7L, 12L, 9L, 7L, 9L, 7L, 5L,
7L, 8L, 8L, 9L, 6L, 3L, 8L, 7L, 5L, 6L, 5L, 5L, 5L, 4L, 4L,
6L, 6L, 6L, 7L, 6L, 3L, 5L, 7L, 8L, 7L, 6L, 7L, 6L, 6L, 7L,
6L, 8L, 7L, 7L, 4L, 5L, 5L, 8L, 6L, 5L, 5L, 6L, 7L, 2L, 5L,
5L, 7L, 5L, 8L, 6L, 8L, 5L, 8L, 7L, 6L, 6L, 7L, 10L, 8L,
10L, 5L, 5L, 6L, 5L, 4L, 5L, 5L, 6L, 6L, 4L, 4L, 3L, 5L,
7L, 8L, 7L, 5L, 10L, 10L, 6L, 2L, 4L, 6L, 4L, 10L, 5L, 5L,
5L, 5L, 6L, 12L, 5L, 5L, 4L, 7L, 5L, 5L, 5L, 4L, 5L, 5L,
5L, 6L, 5L, 9L, 5L, 5L, 5L, 6L, 9L, 9L, 6L, 10L, 6L, 5L,
5L, 11L, 10L, 3L, 6L, 5L, 5L, 11L, 8L, 5L, 9L, 10L, 18L,
12L, 12L, 19L, 6L, 15L, 10L, 9L, 7L, 10L, 8L, 22L, 30L, 5L,
6L, 19L, 11L, 5L, 15L, 7L, 7L, 6L, 5L, 6L), hh_member_count = c(4L,
5L, 4L, 3L, 4L, 6L, 5L, 6L, 7L, 7L, 12L, 9L, 7L, 9L, 7L,
5L, 7L, 8L, 8L, 9L, 6L, 3L, 8L, 7L, 5L, 6L, 5L, 5L, 5L, 4L,
4L, 6L, 6L, 6L, 7L, 6L, 3L, 5L, 7L, 8L, 7L, 6L, 7L, 6L, 6L,
7L, 6L, 8L, 7L, 7L, 4L, 5L, 5L, 8L, 6L, 5L, 5L, 6L, 7L, 2L,
5L, 5L, 7L, 5L, 8L, 6L, 8L, 5L, 8L, 7L, 6L, 6L, 7L, 10L,
8L, 10L, 5L, 5L, 6L, 5L, 4L, 5L, 5L, 6L, 6L, 4L, 4L, 3L,
5L, 7L, 8L, 7L, 5L, 10L, 10L, 6L, 2L, 4L, 6L, 4L, 10L, 5L,
5L, 5L, 5L, 6L, 12L, 5L, 5L, 4L, 7L, 5L, 5L, 5L, 4L, 5L,
5L, 5L, 6L, 5L, 9L, 5L, 5L, 5L, 6L, 9L, 9L, 6L, 10L, 6L,
5L, 5L, 11L, 10L, 3L, 6L, 5L, 5L, 11L, 8L, 5L, 9L, 10L, 18L,
12L, 12L, 19L, 6L, 15L, 10L, 9L, 7L, 10L, 8L, 22L, 30L, 5L,
6L, 19L, 11L, 5L, 15L, 7L, 7L, 6L, 5L, 6L)), class = "data.frame", row.names = c(NA,
-167L))
and the script I want to rewrite
comp_df <- comp_df %>% mutate(`sleep space category` = ifelse(num_sleep_space == 1, "1", ifelse(num_sleep_space >=2
& num_sleep_space <=4 ,"2-4",ifelse(num_sleep_space >=5 & num_sleep_space <=9,
"5-9", ifelse(num_sleep_space >9, ">9", NA)))),
`sleep space category` = factor(`sleep space category` , levels=c("1","2-4","5-9",">9")),
`number of nets given` = ifelse(note_net_type.num_net_given == 1, "1",
ifelse(note_net_type.num_net_given >=2 & note_net_type.num_net_given <=4 ,"2-4",
ifelse(note_net_type.num_net_given >=5 & note_net_type.num_net_given <=9,"5-9",
ifelse(note_net_type.num_net_given >9, ">9", NA)))),
`number of nets given` = factor(`number of nets given`, levels = c("1","2-4","5-9",">9")),
`net surplus/gap` = num_sleep_space - note_net_type.num_net_given,
`number of household members` = ifelse(hh_member_count >= 1 & hh_member_count<= 5, "1-5",
ifelse(hh_member_count >=6 & hh_member_count <=10,"6-10",ifelse(hh_member_count >10, ">10", NA)))) %>%
mutate(`number of household members` = factor(`number of household members`,
levels = c("1-5","6-10",">10")))
I can see why you want to refactor your code!
You are trying to reinvent the cut function using ifelse statements and without taking advantage of the ability to seperate logic out into simple chunks using functions.
Your whole complex code can be replaced with this:
cut4 <- function(x) cut(x, c(0, 1.5, 4.5, 9.5, 20), c("1", "2-4", "5-9", ">9"))
cut3 <- function(x) cut(x, c(0, 5.5, 10.5, 50), c("1-5", "6-10", ">10"))
comp_df <- comp_df %>%
mutate(`sleep space category` = cut4(num_sleep_space),
`number of nets given` = cut4(note_net_type.num_net_given),
`net surplus/gap` = num_sleep_space - note_net_type.num_net_given,
`number of household members` = cut3(hh_member_count))
First off, I am an R newbie. I am trying to apply density plots to various groups within my data. Using fitdistrplus, I have created a single distribution density plot for all of my data.
plot(my_data, pch=20)
plotdist(my_data$Capture_Rate, histo = TRUE, demp = TRUE)
fit_w <- fitdist(my_data$Capture_Rate, "weibull")
fit_g <- fitdist(my_data$Capture_Rate, "gamma")
fit_ln <- fitdist(my_data$Capture_Rate, "lnorm")
par(mfrow=c(2,2))
plot.legend <- c("Weibull", "lognormal", "gamma")
denscomp(list(fit_w, fit_ln, fit_g), legendtext = plot.legend)
Using facet_grid in ggplot, I have created a grid of histograms for each grouping of my data.
df_data <- data.frame(my_data)
cdat <- ddply(df_data, c("sYear", "Season"), summarise, Capture_Rate.mean=mean(Capture_Rate))
ggplot(df_data, aes(x=Capture_Rate, fill=sYear))+
geom_histogram(binwidth = .025,
alpha = .5,
position = "identity")+
#geom_density(alpha=.2, fill="#FF6666")+
geom_vline(data=cdat, aes(xintercept=Capture_Rate.mean),
color="red", linetype="dashed", size=1)+
facet_grid(Season ~ sYear)
What I am looking for is to combine the two results where I get a density plot for each histogram in my grouping grid. Thank you for the assistance.
Sample Data:
a <- dput(my_data)
structure(list(Schedule_Name = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Actuals ", class = "factor"),
Sub_Fleet = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = "38K", class = "factor"), sDate = structure(c(17664,
17665, 17666, 17667, 17668, 17669, 17670, 17672, 17674, 17675,
17676, 17677, 17678, 17679, 17680, 17681, 17682, 17683, 17684,
17685, 17686, 17687, 17688, 17689, 17690, 17691, 17692, 17693,
17694, 17696, 17697, 17698, 17699, 17700, 17701, 17702, 17703,
17704, 17705, 17706, 17707, 17708, 17710, 17711, 17712, 17713,
17714, 17715, 17716, 17717, 17718, 17719, 17720, 17721, 17722,
17723, 17724, 17725, 17728, 17729, 17730, 17731, 17732, 17733,
17734, 17735, 17736, 17737, 17738, 17739, 17740, 17741, 17742,
17743, 17744, 17745, 17746, 17747, 17748, 17749, 17750, 17751,
17753, 17754, 17755, 17758, 17759, 17761, 17762, 17763, 17764,
17765, 17766, 17767, 17768, 17769, 17770, 17771, 17772, 17773,
17774, 17775, 17776, 17777, 17778, 17779, 17781, 17782, 17783,
17784, 17785, 17786, 17787, 17788, 17789, 17790, 17791, 17792,
17793, 17794, 17795, 17796, 17797, 17798, 17799, 17800, 17801,
17802, 17803, 17804, 17805, 17806, 17807, 17808, 17809, 17810,
17811, 17812, 17813, 17814, 17815, 17816, 17817, 17818, 17819,
17820, 17821, 17822, 17823, 17824, 17825, 17826, 17827, 17828,
17829, 17830, 17831, 17832, 17833, 17834, 17835, 17836, 17837,
17838, 17839, 17840, 17841, 17842, 17843, 17844, 17845, 17846,
17847, 17848, 17849, 17850, 17851, 17852, 17853, 17854, 17855,
17856, 17857, 17858, 17859, 17860, 17861, 17862, 17863, 17864,
17865, 17866, 17867, 17868, 17869, 17870, 17871, 17872, 17873,
17874, 17875, 17876, 17877, 17878, 17879, 17880, 17881, 17882,
17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891,
17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900,
17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909,
17910, 17911, 17912, 17913, 17914, 17915, 17916, 17917, 17918,
17919, 17920, 17921, 17922, 17923, 17924, 17925, 17926, 17927,
17928, 17929, 17930, 17931, 17932, 17933, 17934, 17935, 17936,
17937, 17938, 17939, 17940, 17941, 17942, 17943, 17944, 17945,
17946, 17947, 17948, 17949, 17950, 17951, 17952, 17953, 17954,
17955, 17956, 17957, 17958, 17959, 17960, 17961, 17962, 17963,
17964, 17965, 17966, 17967, 17968, 17969, 17970, 17971, 17972,
17973, 17974, 17975, 17976, 17977, 17978, 17979, 17980, 17981,
17982, 17983, 17984, 17985, 17986, 17987, 17988, 17989, 17990,
17991, 17992, 17993, 17994, 17995, 17996, 17997, 17998, 17999,
18000, 18001, 18002, 18003, 18004, 18005, 18006, 18007, 18008,
18009, 18010, 18011, 18012, 18013, 18014, 18015, 18016, 18017,
18018, 18019, 18020, 18021, 18022, 18023, 18024, 18025, 18026,
18027, 18028, 18029, 18030, 18031, 18032, 18033, 18034, 18035,
18036, 18037, 18038, 18039, 18040, 18041, 18042, 18043, 18044,
18045, 18046, 18047, 18048, 18049, 18050, 18051, 18052, 18053,
18054, 18055, 18056, 18057, 18058, 18059, 18060, 18061, 18062,
18063, 18064, 18065, 18066, 18067, 18068, 18069, 18070, 18071,
18072, 18073, 18074, 18075, 18076, 18077, 18078, 18079, 18080,
18081, 18082, 18083, 18084, 18085, 18086, 18087, 18088, 18089,
18090, 18091, 18092), class = "Date"), Active_Tails = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 8L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L,
12L, 13L, 13L, 14L, 14L, 14L, 14L, 15L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 17L, 18L, 18L, 19L, 19L, 19L, 20L, 21L, 21L,
21L, 22L, 22L, 23L, 24L, 25L, 26L, 26L, 26L, 26L, 25L, 26L,
26L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 29L, 30L, 30L, 31L,
32L, 33L, 33L, 34L, 34L, 34L, 35L, 35L, 36L, 36L, 36L, 37L,
37L, 37L, 37L, 38L, 40L, 41L, 41L, 41L, 41L, 41L, 41L, 41L,
41L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 45L, 46L,
46L, 46L, 46L, 46L, 46L, 47L, 48L, 48L, 49L, 49L, 49L, 49L,
50L, 51L, 51L, 52L, 52L, 52L, 52L, 53L, 53L, 54L, 55L, 55L,
55L, 55L, 56L, 56L, 56L, 58L, 58L, 58L, 58L, 60L, 59L, 59L,
60L, 60L, 60L, 60L, 61L, 62L, 63L, 63L, 63L, 63L, 65L, 65L,
65L, 66L, 66L, 66L, 66L, 66L, 66L, 66L, 67L, 67L, 67L, 67L,
67L, 68L, 68L, 68L, 68L, 69L, 69L, 69L, 69L, 69L, 69L, 69L,
69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L,
69L, 69L, 69L, 69L, 69L, 69L, 69L, 70L, 70L, 70L, 69L, 70L,
70L, 71L, 71L, 70L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 70L, 70L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L,
71L, 71L, 71L, 71L, 71L, 71L, 71L), MX_Credits = c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 2L, 1L, 3L, 4L, 3L, 2L, 4L, 4L, 1L, 3L, 2L, 4L,
4L, 3L, 3L, 4L, 2L, 5L, 5L, 4L, 4L, 6L, 7L, 2L, 4L, 6L, 4L,
7L, 9L, 6L, 4L, 7L, 3L, 9L, 6L, 9L, 7L, 7L, 8L, 7L, 5L, 8L,
10L, 11L, 9L, 6L, 8L, 5L, 7L, 6L, 9L, 10L, 8L, 10L, 7L, 9L,
11L, 9L, 10L, 11L, 8L, 10L, 11L, 11L, 9L, 8L, 9L, 13L, 13L,
16L, 15L, 10L, 13L, 16L, 12L, 10L, 14L, 17L, 12L, 12L, 13L,
15L, 18L, 14L, 24L, 15L, 20L, 17L, 17L, 14L, 22L, 19L, 21L,
23L, 16L, 19L, 23L, 16L, 22L, 17L, 17L, 15L, 22L, 21L, 16L,
19L, 19L, 18L, 14L, 23L, 23L, 25L, 17L, 15L, 22L, 21L, 17L,
19L, 17L, 20L, 23L, 22L, 22L, 22L, 19L, 19L, 25L, 22L, 25L,
25L, 21L, 22L, 24L, 24L, 22L, 20L, 26L, 22L, 22L, 26L, 25L,
24L, 27L, 27L, 26L, 24L, 28L, 23L, 27L, 25L, 25L, 27L, 27L,
23L, 28L, 23L, 23L, 29L, 32L, 23L, 19L, 30L, 27L, 30L, 29L,
25L, 29L, 26L, 24L, 30L, 30L, 33L, 24L, 31L, 30L, 28L, 28L,
29L, 35L, 33L, 30L, 33L, 35L, 37L, 32L, 32L, 36L, 30L, 31L,
33L, 33L, 31L, 33L, 33L, 37L, 33L, 33L, 38L, 37L, 37L, 38L,
34L, 36L, 38L, 28L, 35L, 30L, 33L, 38L, 39L, 30L, 34L, 32L,
28L, 37L, 33L, 36L, 39L, 33L, 36L, 34L, 39L, 28L, 39L, 39L,
32L, 30L, 35L, 33L, 37L, 25L, 32L, 30L, 28L, 39L, 36L, 33L,
38L, 40L, 37L, 33L, 35L, 43L, 30L, 32L, 40L, 36L, 30L, 31L,
41L, 29L, 31L, 38L, 41L, 34L, 35L, 42L, 34L, 33L, 40L, 33L,
31L, 38L, 37L, 29L, 33L, 35L, 38L, 34L, 33L, 36L, 39L, 33L,
33L, 31L, 33L, 36L, 33L, 38L, 33L, 30L, 28L, 30L, 28L, 37L,
34L, 33L, 33L, 34L, 35L, 31L, 38L, 30L, 35L, 30L, 45L, 35L,
31L, 30L, 26L, 26L, 35L, 34L, 26L, 34L, 36L, 31L, 31L), Capture_Rate = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5,
1, 1, 0.5, 1, 0.5, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5, 1,
0.33, 1, 1, 0.75, 0.5, 1, 1, 0.25, 0.6, 0.4, 0.8, 0.8, 0.6,
0.6, 0.8, 0.4, 1, 1, 0.67, 0.67, 1, 1, 0.25, 0.4, 0.6, 0.4,
0.64, 0.82, 0.55, 0.36, 0.64, 0.25, 0.75, 0.5, 0.75, 0.58,
0.58, 0.62, 0.54, 0.36, 0.57, 0.71, 0.79, 0.6, 0.38, 0.5,
0.31, 0.44, 0.38, 0.56, 0.63, 0.47, 0.56, 0.39, 0.47, 0.58,
0.47, 0.5, 0.52, 0.38, 0.48, 0.5, 0.5, 0.39, 0.33, 0.36,
0.5, 0.5, 0.62, 0.58, 0.4, 0.5, 0.62, 0.44, 0.37, 0.5, 0.61,
0.43, 0.43, 0.46, 0.52, 0.6, 0.47, 0.77, 0.47, 0.61, 0.52,
0.5, 0.41, 0.65, 0.54, 0.6, 0.64, 0.44, 0.53, 0.62, 0.43,
0.59, 0.46, 0.45, 0.38, 0.54, 0.51, 0.39, 0.46, 0.46, 0.44,
0.34, 0.56, 0.53, 0.58, 0.4, 0.35, 0.51, 0.49, 0.4, 0.44,
0.4, 0.44, 0.5, 0.48, 0.48, 0.48, 0.41, 0.41, 0.53, 0.46,
0.52, 0.51, 0.43, 0.45, 0.49, 0.48, 0.43, 0.39, 0.5, 0.42,
0.42, 0.5, 0.47, 0.45, 0.5, 0.49, 0.47, 0.44, 0.51, 0.41,
0.48, 0.45, 0.43, 0.47, 0.47, 0.4, 0.47, 0.39, 0.39, 0.48,
0.53, 0.38, 0.32, 0.49, 0.44, 0.48, 0.46, 0.4, 0.46, 0.4,
0.37, 0.46, 0.45, 0.5, 0.36, 0.47, 0.45, 0.42, 0.42, 0.43,
0.52, 0.49, 0.45, 0.49, 0.51, 0.54, 0.47, 0.47, 0.52, 0.43,
0.45, 0.48, 0.48, 0.45, 0.48, 0.48, 0.54, 0.48, 0.48, 0.55,
0.54, 0.54, 0.55, 0.49, 0.52, 0.55, 0.41, 0.51, 0.43, 0.48,
0.55, 0.57, 0.43, 0.49, 0.46, 0.4, 0.53, 0.48, 0.51, 0.56,
0.46, 0.51, 0.49, 0.55, 0.39, 0.55, 0.55, 0.45, 0.42, 0.49,
0.46, 0.52, 0.35, 0.46, 0.43, 0.39, 0.55, 0.51, 0.46, 0.54,
0.56, 0.52, 0.46, 0.49, 0.61, 0.42, 0.45, 0.56, 0.51, 0.42,
0.44, 0.58, 0.41, 0.44, 0.54, 0.58, 0.48, 0.49, 0.59, 0.48,
0.46, 0.56, 0.46, 0.44, 0.54, 0.52, 0.41, 0.46, 0.49, 0.54,
0.48, 0.46, 0.51, 0.55, 0.46, 0.46, 0.44, 0.46, 0.51, 0.46,
0.54, 0.46, 0.42, 0.39, 0.42, 0.39, 0.52, 0.48, 0.46, 0.46,
0.48, 0.49, 0.44, 0.54, 0.42, 0.49, 0.42, 0.63, 0.49, 0.44,
0.42, 0.37, 0.37, 0.49, 0.48, 0.37, 0.48, 0.51, 0.44, 0.44
), Total_SPR_IML = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L), Capture_Rate_w_SPR_IML = c(1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5,
1, 0.5, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5, 1, 0.33, 1, 1,
0.75, 0.5, 1, 1, 0.25, 0.6, 0.4, 0.8, 0.8, 0.6, 0.6, 0.8,
0.4, 1, 1, 0.67, 0.67, 1, 1, 0.25, 0.4, 0.6, 0.4, 0.64, 0.82,
0.55, 0.36, 0.64, 0.25, 0.75, 0.5, 0.75, 0.58, 0.58, 0.62,
0.54, 0.36, 0.57, 0.71, 0.79, 0.6, 0.38, 0.5, 0.31, 0.44,
0.38, 0.56, 0.63, 0.47, 0.56, 0.39, 0.47, 0.58, 0.47, 0.5,
0.52, 0.38, 0.48, 0.5, 0.5, 0.39, 0.33, 0.36, 0.5, 0.5, 0.62,
0.58, 0.4, 0.5, 0.62, 0.44, 0.37, 0.5, 0.61, 0.43, 0.43,
0.46, 0.52, 0.6, 0.47, 0.77, 0.47, 0.61, 0.52, 0.5, 0.41,
0.65, 0.54, 0.6, 0.64, 0.44, 0.53, 0.62, 0.43, 0.59, 0.46,
0.45, 0.38, 0.54, 0.51, 0.39, 0.46, 0.46, 0.44, 0.34, 0.56,
0.53, 0.58, 0.4, 0.35, 0.51, 0.49, 0.4, 0.44, 0.4, 0.44,
0.5, 0.48, 0.48, 0.48, 0.41, 0.41, 0.53, 0.46, 0.52, 0.51,
0.43, 0.45, 0.49, 0.48, 0.43, 0.39, 0.5, 0.42, 0.42, 0.5,
0.47, 0.45, 0.5, 0.49, 0.47, 0.44, 0.51, 0.41, 0.48, 0.45,
0.43, 0.47, 0.47, 0.4, 0.47, 0.39, 0.39, 0.48, 0.53, 0.38,
0.32, 0.49, 0.44, 0.48, 0.46, 0.4, 0.46, 0.4, 0.37, 0.46,
0.45, 0.5, 0.36, 0.47, 0.45, 0.42, 0.42, 0.43, 0.52, 0.49,
0.45, 0.49, 0.51, 0.54, 0.47, 0.47, 0.52, 0.43, 0.45, 0.48,
0.48, 0.45, 0.48, 0.48, 0.54, 0.48, 0.48, 0.55, 0.54, 0.54,
0.55, 0.49, 0.52, 0.55, 0.41, 0.51, 0.43, 0.48, 0.55, 0.57,
0.43, 0.49, 0.46, 0.4, 0.53, 0.48, 0.51, 0.56, 0.46, 0.51,
0.49, 0.55, 0.39, 0.55, 0.55, 0.45, 0.42, 0.49, 0.46, 0.52,
0.35, 0.46, 0.43, 0.39, 0.55, 0.51, 0.46, 0.54, 0.56, 0.52,
0.46, 0.49, 0.61, 0.42, 0.45, 0.56, 0.51, 0.42, 0.44, 0.58,
0.41, 0.44, 0.54, 0.58, 0.48, 0.49, 0.59, 0.48, 0.46, 0.56,
0.46, 0.44, 0.54, 0.52, 0.41, 0.46, 0.49, 0.54, 0.48, 0.46,
0.51, 0.55, 0.46, 0.46, 0.44, 0.46, 0.51, 0.46, 0.54, 0.46,
0.42, 0.39, 0.42, 0.39, 0.52, 0.48, 0.46, 0.46, 0.48, 0.49,
0.44, 0.54, 0.42, 0.49, 0.42, 0.63, 0.49, 0.44, 0.42, 0.37,
0.37, 0.49, 0.48, 0.37, 0.48, 0.51, 0.44, 0.44), sYear = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("2018 -",
"2019 -"), class = "factor"), sYear_Month = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L), .Label = c("2018-05",
"2018-06", "2018-07", "2018-08", "2018-09", "2018-10", "2018-11",
"2018-12", "2019-01", "2019-02", "2019-03", "2019-04", "2019-05",
"2019-06", "2019-07"), class = "factor"), Season = structure(c(3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("0.Winter 1H",
"1.Winter 2H", "2.Spring", "3.Summer", "4.Fall"), class = "factor"),
Year_Season = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L), .Label = c("2018-0.Winter 1H", "2018-2.Spring",
"2018-3.Summer", "2018-4.Fall", "2019-1.Winter 2H", "2019-2.Spring",
"2019-3.Summer"), class = "factor")), row.names = c(NA, 418L
), class = "data.frame")
So, the solution for the empirical density is going to slightly easier than do the theoretical distributions. First, let's setup some dummy data, since we don't have any of yours to play around with.
set.seed(123)
# Setup some facets
idx <- expand.grid(c("A", "B"), c("C", "D"))
# For each facet, generate some numbers
df <- apply(idx, 1, function(x){
data.frame(row = x[[1]],
col = x[[2]],
# chose 10 as mean, since Weibull can't be negative
x = rnorm(100, 10))
})
df <- do.call(rbind, df)
Now for the empirical case, we can simply take the density in each facet. We can do this, because ggplot has included kernel density estimates as a stat function.
ggplot(df, aes(x)) +
geom_histogram(binwidth = 0.1) +
# To line up the histogram with KDE, we multiply y-values by binwidth
geom_line(aes(y = ..count..*0.1, colour = "empirical"), stat = "density") +
facet_grid(row ~ col)
Which looks like this:
Because we don't have any ggplot stat functions for the theoretical densities -at least not ones that are panel specific- we would have to pre-compute the xy-coordinates for the theoretical distributions in a separate data.frame:
# Loop over facets
dists <- apply(idx, 1, function(i){
# Grab data belonging to facet
dat <- df$x[df$row == i[[1]] & df$col == i[[2]]]
# Setup x-values
xseq <- seq(min(dat), max(dat), length.out = 100)
# Specify distributions of interest
dists <- c("weibull", "lnorm", "gamma")
# Loop over distributions
fits <- lapply(setNames(dists, dists), function(dist) {
# Estimate parameters
ests <- fitdist(dat, dist)$estimate
# Get y-values
y <- do.call(paste0("d", dist), c(list(x = xseq), as.list(ests)))
# Multiplied by length(dat) to match absolute counts
y * length(dat)
})
# Format everything neatly in a data.frame
out <- lapply(dists, function(j) {
data.frame(row = i[[1]],
col = i[[2]],
x = xseq,
y = fits[[j]],
distr = j)
})
# Combine all distributions
do.call(rbind, out)
})
# Combine all facets
dists <- do.call(rbind, dists)
Now that we've done that tedious work, we can finally plot it:
ggplot(df, aes(x)) +
geom_histogram(binwidth = 0.1) +
geom_line(data = dists, aes(y = y * 0.1, colour = distr)) +
facet_grid(row ~ col)
Adapt as necessary for your own data. Good luck!
EDIT: Now with example data
Assume df is the data.frame from which you've posted the dput() output. I've included a condition that checks if the length of the facet data is longer than 2 and wether the variance is non-zero, so as to skip data from which we wouldn't be able to make any estimates anyway. Furthermore, I've converted variable names to be compatible with how you named them in your data.frame.
idx <- expand.grid(levels(df$Season), levels(df$sYear))
# Loop over facets
dists <- apply(idx, 1, function(i){
dat <- df$Capture_Rate[df$Season == i[[1]] & df$sYear == i[[2]]]
print(length(dat))
if (length(dat) < 2 | var(dat) == 0) {
return(NULL)
}
xseq <- seq(min(dat), max(dat), length.out = 100)
dists <- c("weibull", "lnorm", "gamma")
fits <- lapply(setNames(dists, dists), function(dist) {
ests <- fitdist(dat, dist)$estimate
y <- do.call(paste0("d", dist), c(list(x = xseq), as.list(ests)))
y * length(dat)
})
out <- lapply(dists, function(j) {
data.frame(Season = i[[1]],
sYear = i[[2]],
x = xseq,
y = fits[[j]],
distr = j)
})
do.call(rbind, out)
})
dists <- do.call(rbind, dists)
ggplot(df, aes(x=Capture_Rate, fill=sYear))+
geom_histogram(binwidth = .025,
alpha = .5,
position = "identity") +
geom_line(data = dists, aes(x, y * .025, colour = distr), inherit.aes = FALSE) +
facet_grid(Season ~ sYear)
After searching over an hour (this forum, Youtube, class notes, google) I've found no help for my question. I'm a complete newb who knows nothing about R or stats.
I'm attempting to create a linear mixed effects model in R. I'm measuring leaf width across three different locations (Jacksonville FL, Augusta GA, & Atlanta GA), and within those three locations there is a high-nitrogen and low-nitrogen plot. I have 150 leaf measurements from 50 trees.
My limited understanding tells me that the leaf width is the continuous response variable, and city and plot are the discrete explanatory variables. The random effect would be the individual trees, since the leaf width within a single tree is non-independent.
I've used "nlme" to make a model:
leaf.width.model <- lme(width ~ city*plot, (1|tree.id), data=leaf)
I then ran an ANOVA test, and it suggested there's something going on with city and the interaction between city and plot. This is where I'm stuck. I want to make a plot that has lines for all three cities, but I haven't a clue how to do that. When I try to use the plot function, I just get a boxplot.
I've literally tried for hours and am more lost and confused than before.
1) How can I make this graph?
2) What other tests should I do to analyze and/or visualize this data?
I am forever grateful for any help at all. I really want to learn R and stats very badly, but I'm getting discouraged.
Thank you,
Rich
P.S Here is the output of the dput function:
> dput(tree) structure(list(tree.id = structure(c(24L, 24L, 32L, 25L, 25L, 24L, 24L, 32L, 25L, 25L, 43L, 45L, 45L, 43L, 23L, 23L, 45L, 45L, 23L, 23L, 41L, 41L, 38L, 11L, 11L, 38L, 41L, 41L, 11L, 11L, 14L, 14L, 29L, 13L, 13L, 14L, 14L, 29L, 13L, 13L, 4L, 4L, 1L, 1L, 20L, 1L, 1L, 20L, 6L, 8L, 8L, 5L, 5L, 6L, 4L, 4L, 8L, 8L, 5L, 5L, 9L, 9L, 10L, 10L, 12L, 12L, 13L, 13L, 22L, 22L, 23L, 23L, 24L, 24L, 25L, 25L, 25L, 25L, 40L, 40L, 41L, 41L, 38L, 38L, 39L, 39L, 14L, 14L, 14L, 15L, 15L, 28L, 28L, 29L, 29L, 35L, 35L, 36L, 36L, 37L, 37L, 42L, 42L, 43L, 43L, 44L, 44L, 45L, 45L, 46L, 46L, 47L, 47L, 2L, 1L, 3L, 3L, 4L, 4L, 7L, 11L, 11L, 16L, 16L, 20L, 20L, 21L, 21L, 17L, 17L, 18L, 18L, 19L, 19L, 26L, 26L, 27L, 27L, 30L, 30L, 31L, 31L, 32L, 32L, 33L, 33L, 34L, 34L, 48L), .Label = c("Tree_112", "Tree_112 ", "Tree_115", "Tree_130", "Tree_137", "Tree_139", "Tree_140", "Tree_141", "Tree_153", "Tree_154", "Tree_156", "Tree_159", "Tree_166", "Tree_169", "Tree_171", "Tree_180", "Tree_182", "Tree_184", "Tree_185", "Tree_202", "Tree_213", "Tree_218", "Tree_222", "Tree_227", "Tree_239", "Tree_242", "Tree_246", "Tree_247", "Tree_252", "Tree_260", "Tree_267", "Tree_269", "Tree_271", "Tree_272", "Tree_291", "Tree_293", "Tree_298", "Tree_327", "Tree_329", "Tree_336", "Tree_350", "Tree_401", "Tree_403", "Tree_405", "Tree_407", "Tree_409", "Tree_420", "Tree_851"), class = "factor"), city = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Atlanta", "Augusta", "Jacksonville"), class = "factor"), plot = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("High-N", "Low-N"), class = "factor"), width = c(0.66, 0.716, 0.682, 0.645, 0.645, 0.696, 0.733,
0.707, 0.668, 0.686, 0.617, 0.733, 0.73, 0.615, 0.669, 0.746, 0.687, 0.682, 0.76, 0.713, 0.651, 0.664, 0.679, 0.729, 0.756,
0.669, 0.647, 0.713, 0.767, 0.685, 0.69, 0.731, 0.781, 0.729,
0.725, 0.739, 0.769, 0.791, 0.676, 0.688, 0.719, 0.753, 0.748,
0.791, 0.785, 0.78, 0.723, 0.756, 0.664, 0.645, 0.653, 0.615,
0.591, 0.642, 0.693, 0.716, 0.694, 0.676, 0.662, 0.629, 0.665,
0.748, 0.726, 0.693, 0.715, 0.714, 0.764, 0.732, 0.61, 0.721,
0.703, 0.713, 0.746, 0.752, 0.662, 0.733, 0.707, 0.674, 0.734,
0.79, 0.732, 0.794, 0.703, 0.712, 0.737, 0.731, 0.747, 0.746,
0.787, 0.709, 0.716, 0.764, 0.77, 0.764, 0.802, 0.663, 0.777,
0.642, 0.779, 0.81, 0.724, 0.645, 0.68, 0.637, 0.695, 0.768,
0.761, 0.7, 0.759, 0.726, 0.696, 0.794, 0.774, 0.799, 0.747,
0.606, 0.691, 0.733, 0.707, 0.698, 0.706, 0.72, 0.694, 0.697,
0.737, 0.716, 0.73, 0.706, 0.667, 0.734, 0.528, 0.695, 0.684,
0.763, 0.733, 0.809, 0.6, 0.676, 0.718, 0.759, 0.609, 0.665,
0.667, 0.647, 0.701, 0.663, 0.688, 0.693, 0.899)), .Names = c("tree.id", "city", "plot", "width"), class = "data.frame", row.names = c(NA, -149L))
Thank you all so much for your comments, I sincerely appreciate everyone's help!
As suggested in comments, a line plot might not make sense for your data, as you are studying how width varies in discrete categories (in separate cities and separate plots). Boxplots would make sense as you can make them for each of the interactions of city and plot. To give you a sense of what you can do I generated some fake data and made an example of the sort of plot that might be helpful to you:
# fake data
leaf <- data.frame(tree.id = rep(1:50, each = 3),
city = rep(c("Jackson", "Augusta", "Atlanta"), each = 50),
plot = rep(1:6, each = 25))
# I'll make the average of width different for each plot
leaf$width <- rnorm(nrow(leaf), leaf$plot, 1)
# plotting the data
library(ggplot2) # this is a great library for plotting in R
ggplot(leaf, aes(x = factor(plot), y = width, color = factor(plot))) +
facet_grid(~city, scales = 'free_x') + # This creates a subplot for each city
geom_boxplot() +
geom_point(position = "jitter") +
theme_bw()
In this plot I added the points (the leaf widths for each individual tree) but I 'jittered' them, meaning perturbing their position slightly so that they do not pile up on top of each other and are all visible. You could remove this if you liked.
Exploratory data analysis should be fun! And I think visualization is a good place to start when beginning in statistics. Hopefully this will prove helpful to you.
leaf.width.model <- lme(width ~ city*plot, (1|tree.id), data=leaf)
In this model if you want to plot something, you are probably trying to answer:
How much is the average leaf width for all trees in each city for each type of plot.
To show this information in a figure, you need to plot width on y axis plot plot(high and low nitrogen) on x axis and group the data by city. Then you will get the 3 lines you are taking about. However, you need to get the average width in each group as you only want to show city variation.
To get this plot from raw data: (Using fake data provided by gfgm)
set.seed(100)
leaf <- data.frame(tree.id = rep(1:50, each = 3),
city = rep(c("Jackson", "Augusta", "Atlanta"), each = 50),
plot = rep(c(1, 0), each = 25))
# I'll make the average of width different for each plot
leaf$width <- rnorm(nrow(leaf), leaf$plot, 1)
library(plotly)
library(tidyverse)
leaf %>%
group_by(city,plot) %>%
summarise(avwidth = mean(width, na.rm=T),
avsd = 1.96*sd(width, na.rm=T)/sqrt(25)) %>%
plot_ly(x = ~plot, y = ~avwidth, color= ~city,
type="scatter", mode="markers+lines",
error_y = ~list(array=avsd)
)