3D. "Hand made" Hills and Mountains - math

In my program I've create a mesh that look like this:
http://en.wikibooks.org/wiki/File:Blender3DNoobToPro-Creating_The_Canvas.jpg
And I want to get something like this:
http://en.wikibooks.org/wiki/File:Blender3DNoobToPro-Molding_the_Mountains_02.jpg
I create this mesh with this simple code
for (int i = -(xPlanesCount / 2); i < (xPlanesCount / 2); i++)
{
for (int j = -(yPlanesCount / 2); j < (yPlanesCount / 2); j++)
{
var xOffset = i * size;
var yOffset = j * size;
//code that create a plane
}
}
The question is... if I want to make a hill... how can I do that? I know the coordinates of "hill" top (for example x10 - y2), the radius of the hill is 2 planes and height of the hill is 10 pixels.
What calculation do I need to make to get this result?
http://en.wikibooks.org/wiki/File:Blender3DNoobToPro-Molding_the_Mountains_02.jpg

Applying a Gaussian function at the correct point might do the trick.
EDIT:
In Two-dimensional Gaussian function, you have the general f(x,y) formula, and the explanation of the parameters. Now, you only need to use math functions from your favorite language!

Related

Perlin noise for terrain generation

I'm trying to implement 2D Perlin noise to create Minecraft-like terrain (Minecraft doesn't actually use 2D Perlin noise) without overhangs or caves and stuff.
The way I'm doing it, is by creating a [50][20][50] array of cubes, where [20] will be the maximum height of the array, and its values will be determined with Perlin noise. I will then fill that array with arrays of cube.
I've been reading from this article and I don't understand, how do I compute the 4 gradient vector and use it in my code? Does every adjacent 2D array such as [2][3] and [2][4] have a different 4 gradient vector?
Also, I've read that the general Perlin noise function also takes a numeric value that will be used as seed, where do I put that in this case?
I'm going to explain Perlin noise using working code, and without relying on other explanations. First you need a way to generate a pseudo-random float at a 2D point. Each point should look random relative to the others, but the trick is that the same coordinates should always produce the same float. We can use any hash function to do that - not just the one that Ken Perlin used in his code. Here's one:
static float noise2(int x, int y) {
int n = x + y * 57;
n = (n << 13) ^ n;
return (float) (1.0-((n*(n*n*15731+789221)+1376312589)&0x7fffffff)/1073741824.0);
}
I use this to generate a "landscape" landscape[i][j] = noise2(i,j); (which I then convert to an image) and it always produces the same thing:
...
But that looks too random - like the hills and valleys are too densely packed. We need a way of "stretching" each random point over, say, 5 points. And for the values between those "key" points, you want a smooth gradient:
static float stretchedNoise2(float x_float, float y_float, float stretch) {
// stretch
x_float /= stretch;
y_float /= stretch;
// the whole part of the coordinates
int x = (int) Math.floor(x_float);
int y = (int) Math.floor(y_float);
// the decimal part - how far between the two points yours is
float fractional_X = x_float - x;
float fractional_Y = y_float - y;
// we need to grab the 4x4 nearest points to do cubic interpolation
double[] p = new double[4];
for (int j = 0; j < 4; j++) {
double[] p2 = new double[4];
for (int i = 0; i < 4; i++) {
p2[i] = noise2(x + i - 1, y + j - 1);
}
// interpolate each row
p[j] = cubicInterp(p2, fractional_X);
}
// and interpolate the results each row's interpolation
return (float) cubicInterp(p, fractional_Y);
}
public static double cubicInterp(double[] p, double x) {
return cubicInterp(p[0],p[1],p[2],p[3], x);
}
public static double cubicInterp(double v0, double v1, double v2, double v3, double x) {
double P = (v3 - v2) - (v0 - v1);
double Q = (v0 - v1) - P;
double R = v2 - v0;
double S = v1;
return P * x * x * x + Q * x * x + R * x + S;
}
If you don't understand the details, that's ok - I don't know how Math.cos() is implemented, but I still know what it does. And this function gives us stretched, smooth noise.
->
The stretchedNoise2 function generates a "landscape" at a certain scale (big or small) - a landscape of random points with smooth slopes between them. Now we can generate a sequence of landscapes on top of each other:
public static double perlin2(float xx, float yy) {
double noise = 0;
noise += stretchedNoise2(xx, yy, 5) * 1; // sample 1
noise += stretchedNoise2(xx, yy, 13) * 2; // twice as influential
// you can keep repeating different variants of the above lines
// some interesting variants are included below.
return noise / (1+2); // make sure you sum the multipliers above
}
To put it more accurately, we get the weighed average of the points from each sample.
( + 2 * ) / 3 =
When you stack a bunch of smooth noise together, usually about 5 samples of increasing "stretch", you get Perlin noise. (If you understand the last sentence, you understand Perlin noise.)
There are other implementations that are faster because they do the same thing in different ways, but because it is no longer 1983 and because you are getting started with writing a landscape generator, you don't need to know about all the special tricks and terminology they use to understand Perlin noise or do fun things with it. For example:
1) 2) 3)
// 1
float smearX = interpolatedNoise2(xx, yy, 99) * 99;
float smearY = interpolatedNoise2(xx, yy, 99) * 99;
ret += interpolatedNoise2(xx + smearX, yy + smearY, 13)*1;
// 2
float smearX2 = interpolatedNoise2(xx, yy, 9) * 19;
float smearY2 = interpolatedNoise2(xx, yy, 9) * 19;
ret += interpolatedNoise2(xx + smearX2, yy + smearY2, 13)*1;
// 3
ret += Math.cos( interpolatedNoise2(xx , yy , 5)*4) *1;
About perlin noise
Perlin noise was developed to generate a random continuous surfaces (actually, procedural textures). Its main feature is that the noise is always continuous over space.
From the article:
Perlin noise is function for generating coherent noise over a space. Coherent noise means that for any two points in the space, the value of the noise function changes smoothly as you move from one point to the other -- that is, there are no discontinuities.
Simply, a perlin noise looks like this:
_ _ __
\ __/ \__/ \__
\__/
But this certainly is not a perlin noise, because there are gaps:
_ _
\_ __/
___/ __/
Calculating the noise (or crushing gradients!)
As #markspace said, perlin noise is mathematically hard. Lets simplify by generating 1D noise.
Imagine the following 1D space:
________________
Firstly, we define a grid (or points in 1D space):
1 2 3 4
________________
Then, we randomly chose a noise value to each grid point (This value is equivalent to the gradient in the 2D noise):
1 2 3 4
________________
-1 0 0.5 1 // random noise value
Now, calculating the noise value for a grid point it is easy, just pick the value:
noise(3) => 0.5
But the noise value for a arbitrary point p needs to be calculated based in the closest grid points p1 and p2 using their value and influence:
// in 1D the influence is just the distance between the points
noise(p) => noise(p1) * influence(p1) + noise(p2) * influence(p2)
noise(2.5) => noise(2) * influence(2, 2.5) + noise(3) * influence(3, 2.5)
=> 0 * 0.5 + 0.5 * 0.5 => 0.25
The end! Now we are able to calculate 1D noise, just add one dimension for 2D. :-)
Hope it helps you understand! Now read #mk.'s answer for working code and have happy noises!
Edit:
Follow up question in the comments:
I read in wikipedia article that the gradient vector in 2d perlin should be length of 1 (unit circle) and random direction. since vector has X and Y, how do I do that exactly?
This could be easily lifted and adapted from the original perlin noise code. Find bellow a pseudocode.
gradient.x = random()*2 - 1;
gradient.y = random()*2 - 1;
normalize_2d( gradient );
Where normalize_2d is:
// normalizes a 2d vector
function normalize_2d(v)
size = square_root( v.x * v.x + v.y * v.y );
v.x = v.x / size;
v.y = v.y / size;
Compute Perlin noise at coordinates x, y
function perlin(float x, float y) {
// Determine grid cell coordinates
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
int x1 = x0 + 1;
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
int y1 = y0 + 1;
// Determine interpolation weights
// Could also use higher order polynomial/s-curve here
float sx = x - (double)x0;
float sy = y - (double)y0;
// Interpolate between grid point gradients
float n0, n1, ix0, ix1, value;
n0 = dotGridGradient(x0, y0, x, y);
n1 = dotGridGradient(x1, y0, x, y);
ix0 = lerp(n0, n1, sx);
n0 = dotGridGradient(x0, y1, x, y);
n1 = dotGridGradient(x1, y1, x, y);
ix1 = lerp(n0, n1, sx);
value = lerp(ix0, ix1, sy);
return value;
}

2D Physics Engine collision response rotation of objects

I'm writing my own basic physic engine and now I come to a problem I can't solve. Probably because I don't how to google this problem.
So here is my problem. I hope this image can explain it:
Collision response
I have two objects. The gray one is fixed and don't move and the green one which falls from the top.
The green object has three vectors: a force, the acceleration and the velocity. It collides with the fixed gray object.
The real question is how can I get the rotation of the green object when it falls down?
It sounds like you may not have an understanding of the fundamental physics underlying rigid body dynamics. I say that only because you don't mention any of the terminology commonly used when talking about this kind of problem. You'll need to introduce the idea of orientation and angular velocity (the rotational analogs of position and linear velocity) to each dynamic body in the system, and compute all kinds of intermediate quantities like moment of inertia, angular acceleration, and torque.
Perhaps the best introductory reference for this is Chris Hecker's series of articles for Game Developer Magazine. Assuming you already have non-rotational dynamics (covered in part 1) and collision detection (not covered by this series) solved, you should begin with part 2 and proceed to part 3. They'll give you a solid foundation in the physics and mathematics necessary for implementing rotational collision response.
You do as described below once, when the objects collide.
Let us call the green rectangle "a", and the other one "b".
1.
First you need the rectangles "rotational mass", mass of inertia.
a.i = 4/3 * width * height * (width^2 + height^2) * a.density
2.
Then you need the vector pointing from the rectangle's center of mass (average position of all corners) to the contact position (where the rectangles collide), let us call it "r".
3.
Then you need to find the collision normal. This normal is the direction of an impulse being applied to a from b. The normal is a vector with length 1 unit. In your example the normal would probably point upwards. Let us call the normal vector "n".
4.
Now you will need the velocity of the contact point on a. If a is not rotating, the formula would be:
vp = a.vel
If a is rotating the formula would be:
vp = a.vel + cross(a.r_vel, r)
a.r_vel is a's rotational velocity given in radians and positive direction is counter clockwise.
cross() means cross product, the function is:
cross (v,i) = [-i * v.y , i * v.x]
The expanded formula would be:
vp = a.v + [-r * a.r_vel.y , r * a.r_vel.x]
5.
Now you need to calculate whether the objects are moving towards each other. Project the vp onto n.
vp_p = dot(vp, n)
dot (v1, v2) = v1.x * v2.x + v1.y * v2.y
vp_p is a scalar (a value, not a vector).
If vp_p is negative the obejcts are moving towards each other, if it is > 0 they are moving apart.
6.
Now you need to calculate the impulse to stop a from moving into b, the impulse is:
j = -vp_p / (
1/a.mass + cross(r,n)^2 / a.i
)
The cross product between two vectors are:
cross(v1,v2) = v1.x * v2.y - v1.y * v2.x
It returns a scalar.
Multiply the impulse with the normal to get the impulse vector:
jn = j * n
7.
Now you need to apply the impulse to a:
a.new_vel = a.old_vel + jn / a.mass;
a.new_r_vel = a.old_r_vel + cross(r,jn) / a.i;
If you want the collision to be fully elastic, you must multiply the impulse by 2. Let us call this multiplier "e". e needs to be between 1 and 2. 1 means no energy is conserved, 2 means all energy is conserved.
Example code:
var vp = a.vel + cross(a.r_vel, r);
var vp_p = dot(vp,n); // negative val = moving towards each other
if (vp_p >= 0) { // do they move apart?
return false;
}
// normal impulse
var j = - e * vp_p / (
1/a.mass + cross(r,n)^2 / a.i
);
var jn = j * n;
//
a.vel = a.vel + jn / a.mass;
a.r_vel = a.r_vel + cross(r,jn) / a.i;
If b is not static the algorithm will be slightly different:
a.r = vector pointing from a's center of mass to the contact position
var vp = a.vel + cross(a.r_vel, a.r) - b.vel - cross(b.r_vel, b.r);
var vp_p = dot(vp,n); // negative val = moving towards each other
if (vp_p >= 0) { // do they move apart?
return false;
}
// normal impulse
var j = - e * vp_p / (
1/a.mass + cross(a.r,n)^2 / a.i +
1/b.mass + cross(b.r,n)^2 / b.i
);
var jn = j * n;
//
a.vel = a.vel + jp / a.mass;
a.r_vel = a.r_vel + cross(a.r,jn) / a.i;
b.vel = b.vel - jp / b.mass;
b.r_vel = b.r_vel - cross(b.r,jn) / b.i;
How the formulas work / sources:
http://www.myphysicslab.com/collision.html#resting_contact

How to adjust player sprite speed correctly? (Basically a math question?)

Background: I have a bird view's JavaScript game where the player controls a space ship by touching a circle -- e.g. touch to the left of the circle center, and the ship will move left, touch the top right and it will move to the top right and so on... the further away from the circle center of pseudo joystick, the more speed in that direction. However, I'm not directly adjusting the ship's speed, but rather set a targetSpeed.x and targetSpeed.y value, and the ship will then adjust its speed using something like:
if (this.speed.x < this.targetSpeed.x) {
this.speed.x += this.speedStep;
}
else if (this.speed.x > this.targetSpeed.x) {
this.speed.x -= this.speedStep;
}
... and the same for the y speed, and speedStep is a small value to make it smoother and not too abrupt (a ship shouldn't go from a fast leftwards direction to an immediate fast rightwards direction).
My question: Using above code, I believe however that the speed will be adjusted quicker in diagonal directions, and slower along the horizontal/ vertical lines. How do I correct this to have an equal target speed following?
Thanks so much for any help!
var xdiff = targetSpeed.x - speed.x;
var ydiff = targetSpeed.y - speed.y;
var angle = Math.atan2(ydiff, xdiff);
speed.x += speedStep * Math.cos(angle);
speed.y += speedStep * Math.sin(angle);
Assuming you already checked that the touch is inside the circle, and that the edge of the circle represents max speed, and that the center of the circle is circleTouch == [0, 0]
In some C++-like pseudo code:
Scalar circleRadius = ...;
Scalar maxSpeed = ...;
Scalar acceleration = ...;
Vector calculateTargetSpeed( Vector circleTouch ) {
Vector targetSpeed = maxSpeed * circleTouch / circleRadius;
return targetSpeed;
}
Vector calculateNewSpeed( Vector currentSpeed, Vector targetSpeed ) {
Vector speedDiff = targetSpeed - currentSpeed;
Vector newSpeed = currentSpeed + acceleration * normalized(speedDiff);
return newSpeed;
}
// Divide v by its length to get normalized vector (length 1) with same x/y ratio
Vector normalized( Vector v ) {
return v / length(v);
}
// Pythagoras for the length of v
Scalar length( Vector v ) {
Scalar length = sqrt(v.x * v.x + v.y * v.y); // or preferably hypot(v.x, v.y)
return length;
}
This is just off the top of my head, and i haven't tested it. The other answer is fine, i just wanted to give an answer without trigonometry functions. :)

correcting fisheye distortion programmatically

BOUNTY STATUS UPDATE:
I discovered how to map a linear lens, from destination coordinates to source coordinates.
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
1). I actually struggle to reverse it, and to map source coordinates to destination coordinates. What is the inverse, in code in the style of the converting functions I posted?
2). I also see that my undistortion is imperfect on some lenses - presumably those that are not strictly linear. What is the equivalent to-and-from source-and-destination coordinates for those lenses? Again, more code than just mathematical formulae please...
Question as originally stated:
I have some points that describe positions in a picture taken with a fisheye lens.
I want to convert these points to rectilinear coordinates. I want to undistort the image.
I've found this description of how to generate a fisheye effect, but not how to reverse it.
There's also a blog post that describes how to use tools to do it; these pictures are from that:
(1) : SOURCE Original photo link
Input : Original image with fish-eye distortion to fix.
(2) : DESTINATION Original photo link
Output : Corrected image (technically also with perspective correction, but that's a separate step).
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
My function stub looks like this:
Point correct_fisheye(const Point& p,const Size& img) {
// to polar
const Point centre = {img.width/2,img.height/2};
const Point rel = {p.x-centre.x,p.y-centre.y};
const double theta = atan2(rel.y,rel.x);
double R = sqrt((rel.x*rel.x)+(rel.y*rel.y));
// fisheye undistortion in here please
//... change R ...
// back to rectangular
const Point ret = Point(centre.x+R*cos(theta),centre.y+R*sin(theta));
fprintf(stderr,"(%d,%d) in (%d,%d) = %f,%f = (%d,%d)\n",p.x,p.y,img.width,img.height,theta,R,ret.x,ret.y);
return ret;
}
Alternatively, I could somehow convert the image from fisheye to rectilinear before finding the points, but I'm completely befuddled by the OpenCV documentation. Is there a straightforward way to do it in OpenCV, and does it perform well enough to do it to a live video feed?
The description you mention states that the projection by a pin-hole camera (one that does not introduce lens distortion) is modeled by
R_u = f*tan(theta)
and the projection by common fisheye lens cameras (that is, distorted) is modeled by
R_d = 2*f*sin(theta/2)
You already know R_d and theta and if you knew the camera's focal length (represented by f) then correcting the image would amount to computing R_u in terms of R_d and theta. In other words,
R_u = f*tan(2*asin(R_d/(2*f)))
is the formula you're looking for. Estimating the focal length f can be solved by calibrating the camera or other means such as letting the user provide feedback on how well the image is corrected or using knowledge from the original scene.
In order to solve the same problem using OpenCV, you would have to obtain the camera's intrinsic parameters and lens distortion coefficients. See, for example, Chapter 11 of Learning OpenCV (don't forget to check the correction). Then you can use a program such as this one (written with the Python bindings for OpenCV) in order to reverse lens distortion:
#!/usr/bin/python
# ./undistort 0_0000.jpg 1367.451167 1367.451167 0 0 -0.246065 0.193617 -0.002004 -0.002056
import sys
import cv
def main(argv):
if len(argv) < 10:
print 'Usage: %s input-file fx fy cx cy k1 k2 p1 p2 output-file' % argv[0]
sys.exit(-1)
src = argv[1]
fx, fy, cx, cy, k1, k2, p1, p2, output = argv[2:]
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
cv.Zero(intrinsics)
intrinsics[0, 0] = float(fx)
intrinsics[1, 1] = float(fy)
intrinsics[2, 2] = 1.0
intrinsics[0, 2] = float(cx)
intrinsics[1, 2] = float(cy)
dist_coeffs = cv.CreateMat(1, 4, cv.CV_64FC1)
cv.Zero(dist_coeffs)
dist_coeffs[0, 0] = float(k1)
dist_coeffs[0, 1] = float(k2)
dist_coeffs[0, 2] = float(p1)
dist_coeffs[0, 3] = float(p2)
src = cv.LoadImage(src)
dst = cv.CreateImage(cv.GetSize(src), src.depth, src.nChannels)
mapx = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
mapy = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(intrinsics, dist_coeffs, mapx, mapy)
cv.Remap(src, dst, mapx, mapy, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
# cv.Undistort2(src, dst, intrinsics, dist_coeffs)
cv.SaveImage(output, dst)
if __name__ == '__main__':
main(sys.argv)
Also note that OpenCV uses a very different lens distortion model to the one in the web page you linked to.
(Original poster, providing an alternative)
The following function maps destination (rectilinear) coordinates to source (fisheye-distorted) coordinates. (I'd appreciate help in reversing it)
I got to this point through trial-and-error: I don't fundamentally grasp why this code is working, explanations and improved accuracy appreciated!
def dist(x,y):
return sqrt(x*x+y*y)
def correct_fisheye(src_size,dest_size,dx,dy,factor):
""" returns a tuple of source coordinates (sx,sy)
(note: values can be out of range)"""
# convert dx,dy to relative coordinates
rx, ry = dx-(dest_size[0]/2), dy-(dest_size[1]/2)
# calc theta
r = dist(rx,ry)/(dist(src_size[0],src_size[1])/factor)
if 0==r:
theta = 1.0
else:
theta = atan(r)/r
# back to absolute coordinates
sx, sy = (src_size[0]/2)+theta*rx, (src_size[1]/2)+theta*ry
# done
return (int(round(sx)),int(round(sy)))
When used with a factor of 3.0, it successfully undistorts the images used as examples (I made no attempt at quality interpolation):
Dead link
(And this is from the blog post, for comparison:)
If you think your formulas are exact, you can comput an exact formula with trig, like so:
Rin = 2 f sin(w/2) -> sin(w/2)= Rin/2f
Rout= f tan(w) -> tan(w)= Rout/f
(Rin/2f)^2 = [sin(w/2)]^2 = (1 - cos(w))/2 -> cos(w) = 1 - 2(Rin/2f)^2
(Rout/f)^2 = [tan(w)]^2 = 1/[cos(w)]^2 - 1
-> (Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
However, as #jmbr says, the actual camera distortion will depend on the lens and the zoom. Rather than rely on a fixed formula, you might want to try a polynomial expansion:
Rout = Rin*(1 + A*Rin^2 + B*Rin^4 + ...)
By tweaking first A, then higher-order coefficients, you can compute any reasonable local function (the form of the expansion takes advantage of the symmetry of the problem). In particular, it should be possible to compute initial coefficients to approximate the theoretical function above.
Also, for good results, you will need to use an interpolation filter to generate your corrected image. As long as the distortion is not too great, you can use the kind of filter you would use to rescale the image linearly without much problem.
Edit: as per your request, the equivalent scaling factor for the above formula:
(Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
-> Rout/f = [Rin/f] * sqrt(1-[Rin/f]^2/4)/(1-[Rin/f]^2/2)
If you plot the above formula alongside tan(Rin/f), you can see that they are very similar in shape. Basically, distortion from the tangent becomes severe before sin(w) becomes much different from w.
The inverse formula should be something like:
Rin/f = [Rout/f] / sqrt( sqrt(([Rout/f]^2+1) * (sqrt([Rout/f]^2+1) + 1) / 2 )
I blindly implemented the formulas from here, so I cannot guarantee it would do what you need.
Use auto_zoom to get the value for the zoom parameter.
def dist(x,y):
return sqrt(x*x+y*y)
def fisheye_to_rectilinear(src_size,dest_size,sx,sy,crop_factor,zoom):
""" returns a tuple of dest coordinates (dx,dy)
(note: values can be out of range)
crop_factor is ratio of sphere diameter to diagonal of the source image"""
# convert sx,sy to relative coordinates
rx, ry = sx-(src_size[0]/2), sy-(src_size[1]/2)
r = dist(rx,ry)
# focal distance = radius of the sphere
pi = 3.1415926535
f = dist(src_size[0],src_size[1])*factor/pi
# calc theta 1) linear mapping (older Nikon)
theta = r / f
# calc theta 2) nonlinear mapping
# theta = asin ( r / ( 2 * f ) ) * 2
# calc new radius
nr = tan(theta) * zoom
# back to absolute coordinates
dx, dy = (dest_size[0]/2)+rx/r*nr, (dest_size[1]/2)+ry/r*nr
# done
return (int(round(dx)),int(round(dy)))
def fisheye_auto_zoom(src_size,dest_size,crop_factor):
""" calculate zoom such that left edge of source image matches left edge of dest image """
# Try to see what happens with zoom=1
dx, dy = fisheye_to_rectilinear(src_size, dest_size, 0, src_size[1]/2, crop_factor, 1)
# Calculate zoom so the result is what we wanted
obtained_r = dest_size[0]/2 - dx
required_r = dest_size[0]/2
zoom = required_r / obtained_r
return zoom
I took what JMBR did and basically reversed it. He took the radius of the distorted image (Rd, that is, the distance in pixels from the center of the image) and found a formula for Ru, the radius of the undistorted image.
You want to go the other way. For each pixel in the undistorted (processed image), you want to know what the corresponding pixel is in the distorted image.
In other words, given (xu, yu) --> (xd, yd). You then replace each pixel in the undistorted image with its corresponding pixel from the distorted image.
Starting where JMBR did, I do the reverse, finding Rd as a function of Ru. I get:
Rd = f * sqrt(2) * sqrt( 1 - 1/sqrt(r^2 +1))
where f is the focal length in pixels (I'll explain later), and r = Ru/f.
The focal length for my camera was 2.5 mm. The size of each pixel on my CCD was 6 um square. f was therefore 2500/6 = 417 pixels. This can be found by trial and error.
Finding Rd allows you to find the corresponding pixel in the distorted image using polar coordinates.
The angle of each pixel from the center point is the same:
theta = arctan( (yu-yc)/(xu-xc) ) where xc, yc are the center points.
Then,
xd = Rd * cos(theta) + xc
yd = Rd * sin(theta) + yc
Make sure you know which quadrant you are in.
Here is the C# code I used
public class Analyzer
{
private ArrayList mFisheyeCorrect;
private int mFELimit = 1500;
private double mScaleFESize = 0.9;
public Analyzer()
{
//A lookup table so we don't have to calculate Rdistorted over and over
//The values will be multiplied by focal length in pixels to
//get the Rdistorted
mFisheyeCorrect = new ArrayList(mFELimit);
//i corresponds to Rundist/focalLengthInPixels * 1000 (to get integers)
for (int i = 0; i < mFELimit; i++)
{
double result = Math.Sqrt(1 - 1 / Math.Sqrt(1.0 + (double)i * i / 1000000.0)) * 1.4142136;
mFisheyeCorrect.Add(result);
}
}
public Bitmap RemoveFisheye(ref Bitmap aImage, double aFocalLinPixels)
{
Bitmap correctedImage = new Bitmap(aImage.Width, aImage.Height);
//The center points of the image
double xc = aImage.Width / 2.0;
double yc = aImage.Height / 2.0;
Boolean xpos, ypos;
//Move through the pixels in the corrected image;
//set to corresponding pixels in distorted image
for (int i = 0; i < correctedImage.Width; i++)
{
for (int j = 0; j < correctedImage.Height; j++)
{
//which quadrant are we in?
xpos = i > xc;
ypos = j > yc;
//Find the distance from the center
double xdif = i-xc;
double ydif = j-yc;
//The distance squared
double Rusquare = xdif * xdif + ydif * ydif;
//the angle from the center
double theta = Math.Atan2(ydif, xdif);
//find index for lookup table
int index = (int)(Math.Sqrt(Rusquare) / aFocalLinPixels * 1000);
if (index >= mFELimit) index = mFELimit - 1;
//calculated Rdistorted
double Rd = aFocalLinPixels * (double)mFisheyeCorrect[index]
/mScaleFESize;
//calculate x and y distances
double xdelta = Math.Abs(Rd*Math.Cos(theta));
double ydelta = Math.Abs(Rd * Math.Sin(theta));
//convert to pixel coordinates
int xd = (int)(xc + (xpos ? xdelta : -xdelta));
int yd = (int)(yc + (ypos ? ydelta : -ydelta));
xd = Math.Max(0, Math.Min(xd, aImage.Width-1));
yd = Math.Max(0, Math.Min(yd, aImage.Height-1));
//set the corrected pixel value from the distorted image
correctedImage.SetPixel(i, j, aImage.GetPixel(xd, yd));
}
}
return correctedImage;
}
}
I found this pdf file and I have proved that the maths are correct (except for the line vd = *xd**fv+v0 which should say vd = **yd**+fv+v0).
http://perception.inrialpes.fr/CAVA_Dataset/Site/files/Calibration_OpenCV.pdf
It does not use all of the latest co-efficients that OpenCV has available but I am sure that it could be adapted fairly easily.
double k1 = cameraIntrinsic.distortion[0];
double k2 = cameraIntrinsic.distortion[1];
double p1 = cameraIntrinsic.distortion[2];
double p2 = cameraIntrinsic.distortion[3];
double k3 = cameraIntrinsic.distortion[4];
double fu = cameraIntrinsic.focalLength[0];
double fv = cameraIntrinsic.focalLength[1];
double u0 = cameraIntrinsic.principalPoint[0];
double v0 = cameraIntrinsic.principalPoint[1];
double u, v;
u = thisPoint->x; // the undistorted point
v = thisPoint->y;
double x = ( u - u0 )/fu;
double y = ( v - v0 )/fv;
double r2 = (x*x) + (y*y);
double r4 = r2*r2;
double cDist = 1 + (k1*r2) + (k2*r4);
double xr = x*cDist;
double yr = y*cDist;
double a1 = 2*x*y;
double a2 = r2 + (2*(x*x));
double a3 = r2 + (2*(y*y));
double dx = (a1*p1) + (a2*p2);
double dy = (a3*p1) + (a1*p2);
double xd = xr + dx;
double yd = yr + dy;
double ud = (xd*fu) + u0;
double vd = (yd*fv) + v0;
thisPoint->x = ud; // the distorted point
thisPoint->y = vd;
This can be solved as an optimization problem. Simply draw on curves in images that are supposed to be straight lines. Store the contour points for each of those curves. Now we can solve the fish eye matrix as a minimization problem. Minimize the curve in points and that will give us a fisheye matrix. It works.
It can be done manually by adjusting the fish eye matrix using trackbars! Here is a fish eye GUI code using OpenCV for manual calibration.

Why does this produce a stretched Fractal?

Here is pseudo-code of how I setup an array representing the MandelBrot set, yet it becomes horribly stretched when leaving an aspect ratio of 1:1.
xStep = (maxX - minX) / width;
yStep = (maxY - minY) / height;
for(i = 0; i < width; i++)
for(j = 0; j < height; j++)
{
constantReal = minReal + xStep * i;
constantImag = minImag + yStep * j;
image[i][j] = inSet(constantReal, constantImag);
}
Thanks!
Here is pseudo-code of how I setup an array representing the MandelBrot set, yet it
becomes horribly stretched when leaving an aspect ratio of 1:1.
xStep = (maxX - minX) / width;
yStep = (maxY - minY) / height;
Aha! It's because you must keep the same aspect ratio both for the image you will draw and for the region of the complex plane you want to draw. In other words, it must hold
width maxX - minX
---------- = ---------------------
height maxY - minY
(It follows that xStep == yStep.) Your code probably does not enforce this requirement.
Make sure your casts are all correct. xStep and yStep might be the products of integer division instead of the expected floating point division (if that's C# in your sample, it would require some explicit casts to work correctly).
It probably has to do with how you are displaying the image array. You use the width variable i as the first index, but usually the first index should be the slowest changing, that is, the height.
Try changing the last line to image[j][i] = ...

Resources