Just in Time compilation always faster? - jit

Greetings to all the compiler designers here on Stack Overflow.
I am currently working on a project, which focuses on developing a new scripting language for use with high-performance computing. The source code is first compiled into a byte code representation. The byte code is then loaded by the runtime, which performs aggressive (and possibly time consuming) optimizations on it (which go much further, than what even most "ahead-of-time" compilers do, after all that's the whole point in the project). Keep in mind the result of this process is still byte code.
The byte code is then run on a virtual machine. Currently, this virtual machine is implemented using a straight-forward jump table and a message pump. The virtual machine runs over the byte code with a pointer, loads the instruction under the pointer, looks up an instruction handler in the jump table and jumps into it. The instruction handler carries out the appropriate actions and finally returns control to the message loop. The virtual machine's instruction pointer is incremented and the whole process starts over again. The performance I am able to achieve with this approach is actually quite amazing. Of course, the code of the actual instruction handlers is again fine-tuned by hand.
Now most "professional" run-time environments (like Java, .NET, etc.) use Just-in-Time compilation to translate the byte code into native code before execution. A VM using a JIT does usually have much better performance than a byte code interpreter. Now the question is, since all an interpreter basically does is load an instruction and look up a jump target in a jump table (remember the instruction handler itself is statically compiled into the interpreter, so it is already native code), will the use of Just-in-Time compilation result in a performance gain or will it actually degrade performance? I cannot really imagine the jump table of the interpreter to degrade performance that much to make up the time that was spent on compiling that code using a JITer. I understand that a JITer can perform additional optimization on the code, but in my case very aggressive optimization is already performed on the byte code level prior to execution. Do you think I could gain more speed by replacing the interpreter by a JIT compiler? If so, why?
I understand that implementing both approaches and benchmarking will provide the most accurate answer to this question, but it might not be worth the time if there is a clear-cut answer.
Thanks.

The answer lies in the ratio of single-byte-code-instruction complexity to jump table overheads. If you're modelling high level operations like large matrix multiplications, then a little overhead will be insignificant. If you're incrementing a single integer, then of course that's being dramatically impacted by the jump table. Overall, the balance will depend upon the nature of the more time-critical tasks the language is used for. If it's meant to be a general purpose language, then it's more useful for everything to have minimal overhead as you don't know what will be used in a tight loop. To quickly quantify the potential improvement, simply benchmark some nested loops doing some simple operations (but ones that can't be optimised away) versus an equivalent C or C++ program.

When you use an interpreter, the code cache in your processor caches the interpreter code; not the byte code (which may be cached in the data cache). Since code caches are 2 to 3 times faster than data caches, IIRC; you may see a performance boost if you JIT compile. Also, the native, real code you are executing is probably PIC; something which can be avoided for JITted code.
Everything else depends on how optimized the byte code is, IMHO.

JIT can theoretically optimize better, since it has information not available at compile time (especially about typical runtime behavior). So it can for example do better branch prediction, roll out loops as needed, et.c.
I am sure your jumptable approach is OK, but I still think it would perform rather poor compared to straight C code, don't you think?

Related

julia workflow with JIT compiler

I'v recently picked up Julia as a neat way to implement some computationally heavy projects. So far I'm quite impressed by both speed and convenience - however, there's one thing I sort of dislike: when a code becomes fairly large running scripts takes increasing amounts of time since the JIT compiler needs to compile all files time and time again (not only the modified ones as, e.g., in C++ with CMake). This slows down my development workflow - what's the most julian/best practice way to speed this up so that I avoid waiting (sometime exessive) time?
Despite the workflow outlined in the comments above (keep REPL open and use Revise.jl), this package might be helpful for you:
https://github.com/dmolina/DaemonMode.jl

Could you implement async-await by memcopying stack frames rather than creating state machines?

I am trying to understand all the low-level stuff Compilers / Interpreters / the Kernel do for you (because I'm yet another person who thinks they could design a language that's better than most others)
One of the many things that sparked my curiosity is Async-Await.
I've checked the under-the-hood implementation for a couple languages, including C# (the compiler generates the state machine from sugar code) and Rust (where the state machine has to be implemented manually from the Future trait), and they all implement Async-Await using state machines.
I've not found anything useful by googling ("async copy stack frame" and variations) or in the "Similar questions" section.
To me, this method seems rather complicated and overhead-heavy;
Could you not implement Async-Await by simply memcopying the stack frames of async calls to/from heap?
I'm aware that it is architecturally impossible for some languages (I thank the CLR can't do it, so C# can't either).
Am I missing something that makes this logically impossible? I would expect less complicated code and a performance boost from doing it that way, am I mistaken? I suppose when you have a deep stack hierarchy after a async call (eg. a recursive async function) the amount of data you would have to memcopy is rather large, but there are probably ways to work around that.
If this is possible, then why isn't it done anywhere?
Yes, an alternative to converting code into state machines is copying stacks around. This is the way that the go language does it now, and the way that Java will do it when Project Loom is released.
It's not an easy thing to do for real-world languages.
It doesn't work for C and C++, for example, because those languages let you make pointers to things on the stack. Those pointers can be used by other threads, so you can't move the stack away, and even if you could, you would have to copy it back into exactly the same place.
For the same reason, it doesn't work when your program calls out to the OS or native code and gets called back in the same thread, because there's a portion of the stack you don't control. In Java, project Loom's 'virtual threads' will not release the thread as long as there's native code on the stack.
Even in situations where you can move the stack, it requires dedicated support in the runtime environment. The stack can't just be copied into a byte array. It has to be copied off in a representation that allows the garbage collector to recognize all the pointers in it. If C# were to adopt this technique, for example, it would require significant extensions to the common language runtime, whereas implementing state machines can be accomplished entirely within the C# compiler.
I would first like to begin by saying that this answer is only meant to serve as a starting point to go in the actual direction of your exploration. This includes various pointers and building up on the work of various other authors
I've checked the under-the-hood implementation for a couple languages, including C# (the compiler generates the state machine from sugar code) and Rust (where the state machine has to be implemented manually from the Future trait), and they all implement Async-Await using state machines
You understood correctly that the Async/Await implementation for C# and Rust use state machines. Let us understand now as to why are those implementations chosen.
To put the general structure of stack frames in very simple terms, whatever we put inside a stack frame are temporary allocations which are not going to outlive the method which resulted in the addition of that stack frame (including, but not limited to local variables). It also contains the information of the continuation, ie. the address of the code that needs to be executed next (in other words, the control has to return to), within the context of the recently called method. If this is a case of synchronous execution, the methods are executed one after the other. In other words, the caller method is suspended until the called method finishes execution. This, from a stack perspective fits in intuitively. If we are done with the execution of a called method, the control is returned to the caller and the stack frame can be popped off. It is also cheap and efficient from a perspective of the hardware that is running this code as well (hardware is optimised for programming with stacks).
In the case of asynchronous code, the continuation of a method might have to trigger several other methods that might get called from within the continuation of callers. Take a look at this answer, where Eric Lippert outlines the entirety of how the stack works for an asynchronous flow. The problem with asynchronous flow is that, the method calls do not exactly form a stack and trying to handle them like pure stacks may get extremely complicated. As Eric says in the answer, that is why C# uses graph of heap-allocated tasks and delegates that represents a workflow.
However, if you consider languages like Go, the asynchrony is handled in a different way altogether. We have something called Goroutines and here is no need for await statements in Go. Each of these Goroutines are started on their own threads that are lightweight (each of them have their own stacks, which defaults to 8KB in size) and the synchronization between each of them is achieved through communication through channels. These lightweight threads are capable of waiting asynchronously for any read operation to be performed on the channel and suspend themselves. The earlier implementation in Go is done using the SplitStacks technique. This implementation had its own problems as listed out here and replaced by Contigious Stacks. The article also talks about the newer implementation.
One important thing to note here is that it is not just the complexity involved in handling the continuation between the tasks that contribute to the approach chosen to implement Async/Await, there are other factors like Garbage Collection that play a role. GC process should be as performant as possible. If we move stacks around, GC becomes inefficient because accessing an object then would require thread synchronization.
Could you not implement Async-Await by simply memcopying the stack frames of async calls to/from heap?
In short, you can. As this answer states here, Chicken Scheme uses a something similar to what you are exploring. It begins by allocating everything on the stack and move the stack values to heap when it becomes too large for the GC activities (Chicken Scheme uses Generational GC). However, there are certain caveats with this kind of implementation. Take a look at this FAQ of Chicken Scheme. There is also lot of academic research in this area (linked in the answer referred to in the beginning of the paragraph, which I shall summarise under further readings) that you may want to look at.
Further Reading
Continuation Passing Style
call-with-current-continuation
The classic SICP book
This answer (contains few links to academic research in this area)
TLDR
The decision of which approach to be taken is subjective to factors that affect the overall usability and performance of the language. State Machines are not the only way to implement the Async/Await functionality as done in C# and Rust. Few languages like Go implement a Contigious Stack approach coordinated over channels for asynchronous operations. Chicken Scheme allocates everything on the stack and moves the recent stack value to heap in case it becomes heavy for its GC algorithm's performance. Moving stacks around has its own set of implications that affect garbage collection negatively. Going through the research done in this space will help you understand the advancements and rationale behind each of the approaches. At the same time, you should also give a thought to how you are planning on designing/implementing the other parts of your language for it be anywhere close to be usable in terms of performance and overall usability.
PS: Given the length of this answer, will be happy to correct any inconsistencies that may have crept in.
I have been looking into various strategies for doing this myseøf, because I naturally thi k I can design a language better than anybody else - same as you. I just want to emphasize that when I say better, I actually mean better as in tastes better for my liking, and not objectively better.
I have come to a few different approaches, and to summarize: It really depends on many other design choices you have made in the language.
It is all about compromises; each approach has advantages and disadvantages.
It feels like the compiler design community are still very focused on garbage collection and minimizing memory waste, and perhaps there is room for some innovation for more lazy and less purist language designers given the vast resources available to modern computers?
How about not having a call stack at all?
It is possible to implement a language without using a call stack.
Pass continuations. The function currently running is responsible for keeping and resuming the state of the caller. Async/await and generators come naturally.
Preallocated static memory addresses for all local variables in all declared functions in the entire program. This approach causes other problems, of course.
If this is your design, then asymc functions seem trivial
Tree shaped stack
With a tree shaped stack, you can keep all stack frames until the function is completely done. It does not matter if you allow progress on any ancestor stack frame, as long as you let the async frame live on until it is no longer needed.
Linear stack
How about serializing the function state? It seems like a variant of continuations.
Independent stack frames on the heap
Simply treat invocations like you treat other pointers to any value on the heap.
All of the above are trivialized approaches, but one thing they have in common related to your question:
Just find a way to store any locals needed to resume the function. And don't forget to store the program counter in the stack frame as well.

How to use non-blocking point-to-point MPI routines instead of collectives

In my programm, I would like to heavily parallelize many mathematical calculations, the results of which are then written to an output file.
I successfully implemented that using collective communication (gather, scatter etc.) but I noticed that using these synchronizing routines, the slowest among all processors dominates the execution time and heavily reduces overall computation time, as fast processors spend a lot of time waiting.
So I decided to switch to the scheme, where one (master) processor is dedicated to receiving chunks of results and handling the file output, and alle the other processors calculate these results and send them to the master using non-blocking send routines.
Unfortunately, I don't really know how to implement the master code; Do I need to run an infinite loop with MPI_Recv(), listening for incoming messages? How do I know when to stop the loop? Can I combine MPI_Isend() and MPI_Recv(), or do both method need to be non-blocking? How is this typically done?
MPI 3.1 provides non-blocking collectives. I would strongly recommend that instead of implementing it on your own.
However, it may not help you after all. Eventually you need the data from all processes, even the slow ones. So you are likely to wait at some point again. Non-blocking communication overlaps communication and computation, but it doesn't fix your load imbalances.
Update (more or less a long clarification comment)
There are several layers to your question, I might have been confused by the title as to what kind of answer you were expecting. Maybe the question is rather
How do I implement a centralized work queue in MPI?
This pops up regularly, most recently here. But that is actually often undesirable because a central component quickly becomes a bottleneck in large scale programs. So the actual problem you have, is that your work decomposition & mapping is imbalanced. So the more fundamental "X-question" is
How do I load balance an MPI application?
At that point you must provide more information about your mathematical problem and it's current implementation. Preferably in form of an [mcve]. Again, there is no standard solution. Load balancing is a huge research area. It may even be a topic for CS.SE rather than SO.

Use cases for self-modifying code?

On a Von Neumann architecture, program and data are both stored in memory, so a program can modify itself. Is this useful for a programmer? Could you give some examples?
Metamorphism
One (questionable) use case that comes to my mind is metamorphic computer viruses. These are malicious pieces of software that conceal themselves from signature based detection by rewriting their own machine code to an semantically equivalent representation that looks different.
Trampolining
Another (more complex, but also more common) use case is trampolining, a technique based on dynamic code generation to solve certain problems with nested function calls.
JIT compilation
The most common usage of dynamic code generation that I can think of is JIT (just-in-time) compilation. Modern languages like .NET or Java are not compiled into native machine code, but into some kind of intermediate language (called bytecode). This bytecode is then interpreted when the program is executed (by a virtual machine written for the target architecture). At the same time, a background process checks which parts of the code are executed very often. These parts then have a good chance of being dynamically compiled into native machine language for maximum performance. All this happens during the run time of the program!
Security implications
One thing to keep in mind is that the possibility to interpret data as code is useful for exploiting security holes in computer software, which is why the trend in modern hardware and operating systems is to enable and, if possible, even enforce the separation of code and data (also see NX bit and DEP).
I can best answer this by referring you to an answer to a similar (exceptionally well written and answered) question, also on StackOverflow - Homoiconic and "unrestricted" self modifying code + Is lisp really self modifying?. The answer focuses on Lisp, a family languages known for taking "code is data" to the next level, and explores the uses of that in AI.

Language without explicit memory alloc/dealloc AND without garbage collection

I was wondering if it is possible to create a programming language without explicit memory allocation/deallocation (like C, C++ ...) AND without garbage collection (like Java, C#...) by doing a full analysis at the end of each scope?
The obvious problem is that this would take some time at the end of each scope, but I was wondering if it has become feasible with all the processing power and multiple cores in current CPU's. Do such languages exist already?
I also was wondering if a variant of C++ where smart pointers are the only pointers that can be used, would be exactly such a language (or am I missing some problems with that?).
Edit:
Well after some more research apparently it's this: http://en.wikipedia.org/wiki/Reference_counting
I was wondering why this isn't more popular. The disadvantages listed there don't seem quite serious, the overhead should be that large according to me. A (non-interpreted, properly written from the ground up) language with C family syntax with reference counting seems like a good idea to me.
The biggest problem with reference counting is that it is not a complete solution and is not capable of collecting a cyclic structure. The overhead is incurred every time you set a reference; for many kinds of problems this adds up quickly and can be worse than just waiting for a GC later. (Modern GC is quite advanced and awesome - don't count it down like that!!!)
What you are talking about is nothing special, and it shows up all the time. The C or C++ variant you are looking for is just plain regular C or C++.
For example write your program normally, but constrain yourself not to use any dynamic memory allocation (no new, delete, malloc, or free, or any of their friends, and make sure your libraries do the same), then you have that kind of system. You figure out in advance how much memory you need for everything you could do, and declare that memory statically (either function level static variables, or global variables). The compiler takes care of all the accounting the normal way, nothing special happens at the end of each scope, and no extra computation is necessary.
You can even configure your runtime environment to have a statically allocated stack space (this one isn't really under the compiler's control, more linker and operating system environment). Just figure out how deep your function call chain goes, and how much memory it uses (with a profiler or similar tool), an set it in your link options.
Without dynamic memory allocation (and thus no deallocation through either garbage collection or explicit management), you are limited to the memory you declared when you wrote the program. But that's ok, many programs don't need dynamic memory, and are already written that way. The real need for this shows up in embedded and real-time systems when you absolutely, positively need to know exactly how long an operation will take, how much memory (and other resources) it will use, and that the running time and the use of those resources can't ever change.
The great thing about C and C++ is that the language requires so little from the environment, and gives you the tools to do so much, that smart pointers or statically allocated memory, or even some special scheme that you dream up can be implemented. Requiring the use them, and the constraints you put on yourself just becomes a policy decision. You can enforce that policy with code auditing (use scripts to scan the source or object files and don't permit linking to the dynamic memory libraries)

Resources