Symmetric and Asymmetric ciphers, non-repudiation? - encryption

I have read on wikipedia "However, symmetric ciphers also can be used for non-repudiation purposes by ISO 13888-2 standard."
Then again and I read on another wiki page, "Non-repudiation, or more specifically non-repudiation of origin, is an important aspect of digital signatures. By this property an entity that has signed some information cannot at a later time deny having signed it. Similarly, access to the public key only does not enable a fraudulent party to fake a valid signature. This is in contrast to symmetric systems, where both sender and receiver share the same secret key, and thus in a dispute a third party cannot determine which entity was the true source of the information."
This means one page says symmetric algorithms have non-repudiation and another page says they don't have it and therefore they are not used for digital signatures. So do symmetric keys have non-repudiation or not? It makes sense that they can not be used for signatures and non-repudiation since symmetric keys are the same and thus the system can't distinguish which one belongs to which person and which one is first etc. In that case I think symmetric keys are only a tool for confidentiality and not used for non-repudiation or digital signatures.

As for non-repudiation, the tricky part is that it's not technical but rather legal term and it causes a lot of misunderstanding if placed in technical context. The thing is that you can always repudiate anything you have done. And that's why there are courts.
In the court two parties are confronted and try to prove each other wrong using evidence. Here's where technology comes, as it allows to collect sufficient electronic evidence to prove wrong the party that tries to deny a transaction, message etc.
And this is exactly what ISO 13888 series does in part 1: it provides guidelines on what evidence to collect and how to protect it to maximise your chances of countering a repudiation of electronic transaction. This standard talks about a number of tokens that serve this purpose. These tokens are for example: identifiers of both parties, timestamps, message hashes etc. Then it goes into details on how you should protect these tokens so that they retain their value as evidence.
The two other parts (2 and 3) describe specific cryptographic techniques that can be applied to obtain tokens. Symmetric ones are just keyed hashes if I remember correctly (such as HMAC), while assymetric is digital signature.

I think the answer depends on whether the shared key is public or not. If the parties agree to public source (third party) for their shared key there is non-repudiation of origin.

ISO 13888-2 introduces structures and protocols which can be used to introduce non-repudiation services, in the context of symmetric techniques. However all these "tricks" rely on the existence of a Trusted Third Party.
The point of the second Wikipedia citation in the question is that asymmetric key systems intrinsically [and without the need of thrid parties] offer non-repudiation features (specifically NRO i.e. non-repudation of the the Origin).

Related

has anyone undergone certification of PCI-DSS using general purpose HSM (and not payshield)?

can we utilise a general purpose HSM for EMV related work ? like ARQC/ARPC ? PCI guidelines do not specifically prohibit general purpose HSM from being used. There are certain constraints (e.g. disallow trnslation of ISO Type 0 to Type 1), etc.
But im generally curious - has anyone passed certification of a EMV switch using a general purpose HSM ?
Here's why I think it is possible:
ISO 9564 and TR-31 standards mandate that a few common things like
b) It must prevent the determination of key length for variable length
keys.
c) It must ensure that the key can only be used for a specific
algorithm (such as TDES or AES, but not both).
d) It must ensure a modified key or key block can be rejected prior to use, regardless of the utility of the key after modification. Modification includes changing any bits of the key, as well as the reordering or manipulation of individual single DES keys within a TDES key block
In forthcoming TR-31 regulations, I see that AWS KMS is compliant at the "at-rest integrity checks" using stuff like EncryptionContext and Policy Constraints
so im generally wondering what prevents us from using KMS for this purpose ?

Key derivation function for random bytes?

I know KDF (Key derivation function) are used to stretch user passwords, which are basically not suitable to be used as keys in cryptographic algorithms.
But what if I create a random key (random 32 bytes), do I still need to use KDF on it to ensure proper encryption?
A KDF is typically used for deriving cryptographic keys from things like passphrases, which as you correctly say are not suitable for direct use. But they are also used for deriving additional keys from a master key, which depending on your overall scheme, might be useful.
Suppose you used a key agreement protocol where both parties ended up with a random shared secret. You could use a KDF to derive a key for encryption, and one for message integrity (for example, an HMAC key).
From NIST SP800-108:
When parties share a secret symmetric key (e.g., upon a successful
execution of a key- establishment scheme as specified in 1 and
[2]), it is often the case that additional keys will be needed (e.g.
as described in [3]). Separate keys may be needed for different
cryptographic purposes – for example, one key may be required for an
encryption algorithm, while another key is intended for use by an
integrity protection algorithm, such as a message authentication
code. At other times, the distinct keys required by multiple entities
may be generated by a trusted party from a single master key. Key
derivation functions are used to derive such keys.
The short answer is, no, you don't need to use a KDF, assuming your key generation is correct.

time-based encryption algorithm?

I've an idea in my mind but I've no idea what the magic words are to use in Google - I'm hoping to describe the idea here and maybe someone will know what I'm looking for.
Imagine you have a database. Lots of data. It's encrypted. What I'm looking for is an encryption whereby to decrypt, a variable N must at a given time hold the value M (obtained from a third party, like a hardware token) or it failed to decrypt.
So imagine AES - well, AES is just a single key. If you have the key, you're in. Now imagine AES modified in such a way that the algorithm itself requires an extra fact, above and beyond the key - this extra datum from an external source, and where that datum varies over time.
Does this exist? does it have a name?
This is easy to do with the help of a trusted third party. Yeah, I know, you probably want a solution that doesn't need one, but bear with me — we'll get to that, or at least close to that.
Anyway, if you have a suitable trusted third party, this is easy: after encrypting your file with AES, you just send your AES key to the third party, ask them to encrypt it with their own key, to send the result back to you, and to publish their key at some specific time in the future. At that point (but no sooner), anyone who has the encrypted AES key can now decrypt it and use it to decrypt the file.
Of course, the third party may need a lot of key-encryption keys, each to be published at a different time. Rather than storing them all on a disk or something, an easier way is for them to generate each key-encryption key from a secret master key and the designated release time, e.g. by applying a suitable key-derivation function to them. That way, a distinct and (apparently) independent key can be generated for any desired release date or time.
In some cases, this solution might actually be practical. For example, the "trusted third party" might be a tamper-resistant hardware security module with a built-in real time clock and a secure external interface that allows keys to be encrypted for any release date, but to be decrypted only for dates that have passed.
However, if the trusted third party is a remote entity providing a global service, sending each AES key to them for encryption may be impractical, not to mention a potential security risk. In that case, public-key cryptography can provide a solution: instead of using symmetric encryption to encrypt the file encryption keys (which would require them either to know the file encryption key or to release the key-encryption key), the trusted third party can instead generate a public/private key pair for each release date and publish the public half of the key pair immediately, but refuse to disclose the private half until the specified release date. Anyone else holding the public key may encrypt their own keys with it, but nobody can decrypt them until the corresponding private key has been disclosed.
(Another partial solution would be to use secret sharing to split the AES key into the shares and to send only one share to the third party for encryption. Like the public-key solution described above, this would avoid disclosing the AES key to the third party, but unlike the public-key solution, it would still require two-way communication between the encryptor and the trusted third party.)
The obvious problem with both of the solutions above is that you (and everyone else involved) do need to trust the third party generating the keys: if the third party is dishonest or compromised by an attacker, they can easily disclose the private keys ahead of time.
There is, however, a clever method published in 2006 by Michael Rabin and Christopher Thorpe (and mentioned in this answer on crypto.SE by one of the authors) that gets at least partially around the problem. The trick is to distribute the key generation among a network of several more or less trustworthy third parties in such a way that, even if a limited number of the parties are dishonest or compromised, none of them can learn the private keys until a sufficient majority of the parties agree that it is indeed time to release them.
The Rabin & Thorpe protocol also protects against a variety of other possible attacks by compromised parties, such as attempts to prevent the disclosure of private keys at the designated time or to cause the generated private or public keys not to match. I don't claim to understand their protocol entirely, but, given that it's based on a combination of existing and well studies cryptographic techniques, I see no reason why it shouldn't meet its stated security specifications.
Of course, the major difficulty here is that, for those security specifications to actually amount to anything useful, you do need a distributed network of key generators large enough that no single attacker can plausibly compromise a sufficient majority of them. Establishing and maintaining such a network is not a trivial exercise.
Yes, the kind of encrpytion you are looking for exists. It is called timed-release encryption, or abbreviated TRE. Here is a paper about it: http://cs.brown.edu/~foteini/papers/MathTRE.pdf
The following is an excerpt from the abstract of the above paper:
There are nowdays various e-business applications, such as sealedbid auctions and electronic voting, that require time-delayed decryption of encrypted data. The literature oers at least three main categories of protocols that provide such timed-release encryption (TRE).
They rely either on forcing the recipient of a message to solve some time-consuming, non-paralellizable problem before being able to decrypt, or on the use of a trusted entity responsible for providing a piece of information which is necessary for decryption.
I personally like another name, which is "time capsule cryptography", probably coined at crypto.stackoverflow.com: Time Capsule cryptography?.
A quick answer is no: the key used to decrypt the data cannot change in time, unless you decrypt and re-encrypt all the database periodically (I suppose it is not feasible).
The solution suggested by #Ilmari Karonen is the only one feasible but it needs a trusted third party, furthermore, once obtained the master AES key it is reusable in the future: you cannot use 'one time pads' with that solution.
If you want your token to be time-based you can use TOTP algorithm
TOTP can help you generate a value for variable N (token) at a given time M. So the service requesting the access to your database would attach a token which was generated using TOTP. During validation of token at access provider end, you'll validate if the token holds the correct value based on the current time. You'll need to have a Shared Key at both the ends to generate same TOTP.
The advantage of TOTP is that the value changes with time and one token cannot be reused.
I have implemented a similar thing for two factor authentication.
"One time Password" could be your google words.
I believe what you are looking for is called Public Key Cryptography or Public Key Encryption.
Another good word to google is "asymmetric key encryption scheme".
Google that and I'm quite sure you'll find what you're looking for.
For more information Wikipedia's article
An example of this is : Diffie–Hellman key exchange
Edit (putting things into perspective)
The second key can be determined by an algorithm that uses a specific time (for example at the insert of data) to generate the second key which can be stored in another location.
As other guys pointed out One Time Password may be a good solution for the scenario you proposed.
There's an OTP implemented in C# that you might take a look https://code.google.com/p/otpnet/.
Ideally, we want a generator that depends on the time, but I don't know any algorithm that can do that today.
More generally, if Alice wants to let Bob know about something at a specific point in time, you can consider this setup:
Assume we have a public algorithm that has two parameters: a very large random seed number and the expected number of seconds the algorithm will take to find the unique solution of the problem.
Alice generates a large seed.
Alice runs it first on her computer and computes the solution to the problem. It is the key. She encrypts the message with this key and sends it to Bob along with the seed.
As soon as Bob receives the message, Bob runs the algorithm with the correct seed and finds the solution. He then decrypts the message with this key.
Three flaws exist with this approach:
Some computers can be faster than others, so the algorithm has to be made in such a way as to minimize the discrepancies between two different computers.
It requires a proof of work which may be OK in most scenarios (hello Bitcoin!).
If Bob has some delay, then it will take him more time to see this message.
However, if the algorithm is independent of the machine it runs on, and the seed is large enough, it is guaranteed that Bob will not see the content of the message before the deadline.

Been advised to use same IV in AES implementation

We've had to extend our website to communicate user credentials to a suppliers website (in the query string) using AES with a 256-bit key, however they are using a static IV when decrypting the information.
I've advised that the IV should not be static and that it is not in our standards to do that, but if they change it their end we would incur the [big] costs so we have agreed to accept this as a security risk and use the same IV (much to my extreme frustration).
What I wanted to know is, how much of a security threat is this? I need to be able to communicate this effectively to management so that they know exactly what they are agreeing to.
*UPDATE:*We are also using the same KEY throughout as well.
Thanks
Using a static IV is always a bad idea, but the exact consequences depend on the Mode of Operation in use. In all of them, the same plaintext will produce the same ciphertext, but there may be additional vulnerabilities: For example, in CFB mode, given a static key, the attacker can extract the cipherstream from a known plaintext, and use it to decrypt all subsequent strings!
Using a static IV is always a bad idea. Using a static key is always a bad idea. I bet that your supplier had compiled the static key into their binaries.
Sadly, I've seen this before. Your supplier has a requirement that they implement encryption and they are attempting to implement the encryption in a manner that's as transparent as possible---or as "checkbox" as possible. That is, they aren't really using encryption to provide security, they are using it to satisfy a checkbox requirement.
My suggestion is that you see if the supplier would be willing to forsake this home-brewed encryption approach and instead run their system over SSL. Then you get the advantage of using a quality standard security protocol with known properties. It's clear from your question that neither your supplier nor you should be attempting to design a security protocol. You should, instead, use one that is free and available on every platform.
As far as I know (and I hope others will correct me if I'm wrong / the user will verify this), you lose a significant amount of security by keeping a static key and IV. The most significant effect you should notice is that when you encrypt a specific plaintext (say usernameA+passwordB), you get the same ciphertext every time.
This is great for pattern analysis by attackers, and seems like a password-equivalent that would give attackers the keys to the kingdom:
Pattern analysis: The attacker can see that the encrypted user+password combination "gobbbledygook" is used every night just before the CEO leaves work. The attacker can then leverage that information into the future to remotely detect when the CEO leaves.
Password equivalent: You are passing this username+password in the URL. Why can't someone else pass exactly the same value and get the same results you do? If they can, the encrypted data is a plaintext equivalent for the purposes of gaining access, defeating the purpose of encrypting the data.
What I wanted to know is, how much of a security threat is this? I need to be able to communicate this effectively to management so that they know exactly what they are agreeing to.
A good example of re-using the same nonce is Sony vs. Geohot (on a different algorithm though). You can see the results for sony :) To the point. Using the same IV might have mild or catastrophic issues depending on the encryption mode of AES you use. If you use CTR mode then everything you encrypted is as good as plaintext. In CBC mode your first block of plaintext will be the same for the same encrypted data.

How to choose an AES encryption mode (CBC ECB CTR OCB CFB)?

Which of them are preferred in which circumstances?
I'd like to see the list of evaluation crtieria for the various modes, and maybe a discussion of the applicability of each criterion.
For example,
I think one of the criteria is "size of the code" for encryption and decryption, which is important for micro-code embedded systems, like 802.11 network adapters. IF the code required to implement CBC is much smaller than that required for CTR (I don't know this is true, it's just an example), then I could understand why the mode with the smaller code would be preferred. But if I am writing an app that runs on a server, and the AES library I am using implements both CBC and CTR anyway, then this criterion is irrelevant.
See what I mean by "list of evaluation criteria and applicability of each criterion" ??
This isn't really programming related but it is algorithm related.
Please consider long and hard if you can't get around implementing your own cryptography
The ugly truth of the matter is that if you are asking this question you will probably not be able to design and implement a secure system.
Let me illustrate my point: Imagine you are building a web application and you need to store some session data. You could assign each user a session ID and store the session data on the server in a hash map mapping session ID to session data. But then you have to deal with this pesky state on the server and if at some point you need more than one server things will get messy. So instead you have the idea to store the session data in a cookie on the client side. You will encrypt it of course so the user cannot read and manipulate the data. So what mode should you use? Coming here you read the top answer (sorry for singling you out myforwik). The first one covered - ECB - is not for you, you want to encrypt more than one block, the next one - CBC - sounds good and you don't need the parallelism of CTR, you don't need random access, so no XTS and patents are a PITA, so no OCB. Using your crypto library you realize that you need some padding because you can only encrypt multiples of the block size. You choose PKCS7 because it was defined in some serious cryptography standards. After reading somewhere that CBC is provably secure if used with a random IV and a secure block cipher, you rest at ease even though you are storing your sensitive data on the client side.
Years later after your service has indeed grown to significant size, an IT security specialist contacts you in a responsible disclosure. She's telling you that she can decrypt all your cookies using a padding oracle attack, because your code produces an error page if the padding is somehow broken.
This is not a hypothetical scenario: Microsoft had this exact flaw in ASP.NET until a few years ago.
The problem is there are a lot of pitfalls regarding cryptography and it is extremely easy to build a system that looks secure for the layman but is trivial to break for a knowledgeable attacker.
What to do if you need to encrypt data
For live connections use TLS (be sure to check the hostname of the certificate and the issuer chain). If you can't use TLS, look for the highest level API your system has to offer for your task and be sure you understand the guarantees it offers and more important what it does not guarantee. For the example above a framework like Play offers client side storage facilities, it does not invalidate the stored data after some time, though, and if you changed the client side state, an attacker can restore a previous state without you noticing.
If there is no high level abstraction available use a high level crypto library. A prominent example is NaCl and a portable implementation with many language bindings is Sodium. Using such a library you do not have to care about encryption modes etc. but you have to be even more careful about the usage details than with a higher level abstraction, like never using a nonce twice. For custom protocol building (say you want something like TLS, but not over TCP or UDP) there are frameworks like Noise and associated implementations that do most of the heavy lifting for you, but their flexibility also means there is a lot of room for error, if you don't understand in depth what all the components do.
If for some reason you cannot use a high level crypto library, for example because you need to interact with existing system in a specific way, there is no way around educating yourself thoroughly. I recommend reading Cryptography Engineering by Ferguson, Kohno and Schneier. Please don't fool yourself into believing you can build a secure system without the necessary background. Cryptography is extremely subtle and it's nigh impossible to test the security of a system.
Comparison of the modes
Encryption only:
Modes that require padding:
Like in the example, padding can generally be dangerous because it opens up the possibility of padding oracle attacks. The easiest defense is to authenticate every message before decryption. See below.
ECB encrypts each block of data independently and the same plaintext block will result in the same ciphertext block. Take a look at the ECB encrypted Tux image on the ECB Wikipedia page to see why this is a serious problem. I don't know of any use case where ECB would be acceptable.
CBC has an IV and thus needs randomness every time a message is encrypted, changing a part of the message requires re-encrypting everything after the change, transmission errors in one ciphertext block completely destroy the plaintext and change the decryption of the next block, decryption can be parallelized / encryption can't, the plaintext is malleable to a certain degree - this can be a problem.
Stream cipher modes: These modes generate a pseudo random stream of data that may or may not depend the plaintext. Similarly to stream ciphers generally, the generated pseudo random stream is XORed with the plaintext to generate the ciphertext. As you can use as many bits of the random stream as you like you don't need padding at all. Disadvantage of this simplicity is that the encryption is completely malleable, meaning that the decryption can be changed by an attacker in any way he likes as for a plaintext p1, a ciphertext c1 and a pseudo random stream r and attacker can choose a difference d such that the decryption of a ciphertext c2=c1⊕d is p2 = p1⊕d, as p2 = c2⊕r = (c1 ⊕ d) ⊕ r = d ⊕ (c1 ⊕ r). Also the same pseudo random stream must never be used twice as for two ciphertexts c1=p1⊕r and c2=p2⊕r, an attacker can compute the xor of the two plaintexts as c1⊕c2=p1⊕r⊕p2⊕r=p1⊕p2. That also means that changing the message requires complete reencryption, if the original message could have been obtained by an attacker. All of the following steam cipher modes only need the encryption operation of the block cipher, so depending on the cipher this might save some (silicon or machine code) space in extremely constricted environments.
CTR is simple, it creates a pseudo random stream that is independent of the plaintext, different pseudo random streams are obtained by counting up from different nonces/IVs which are multiplied by a maximum message length so that overlap is prevented, using nonces message encryption is possible without per message randomness, decryption and encryption are completed parallelizable, transmission errors only effect the wrong bits and nothing more
OFB also creates a pseudo random stream independent of the plaintext, different pseudo random streams are obtained by starting with a different nonce or random IV for every message, neither encryption nor decryption is parallelizable, as with CTR using nonces message encryption is possible without per message randomness, as with CTR transmission errors only effect the wrong bits and nothing more
CFB's pseudo random stream depends on the plaintext, a different nonce or random IV is needed for every message, like with CTR and OFB using nonces message encryption is possible without per message randomness, decryption is parallelizable / encryption is not, transmission errors completely destroy the following block, but only effect the wrong bits in the current block
Disk encryption modes: These modes are specialized to encrypt data below the file system abstraction. For efficiency reasons changing some data on the disc must only require the rewrite of at most one disc block (512 bytes or 4kib). They are out of scope of this answer as they have vastly different usage scenarios than the other. Don't use them for anything except block level disc encryption. Some members: XEX, XTS, LRW.
Authenticated encryption:
To prevent padding oracle attacks and changes to the ciphertext, one can compute a message authentication code (MAC) on the ciphertext and only decrypt it if it has not been tampered with. This is called encrypt-then-mac and should be preferred to any other order. Except for very few use cases authenticity is as important as confidentiality (the latter of which is the aim of encryption). Authenticated encryption schemes (with associated data (AEAD)) combine the two part process of encryption and authentication into one block cipher mode that also produces an authentication tag in the process. In most cases this results in speed improvement.
CCM is a simple combination of CTR mode and a CBC-MAC. Using two block cipher encryptions per block it is very slow.
OCB is faster but encumbered by patents. For free (as in freedom) or non-military software the patent holder has granted a free license, though.
GCM is a very fast but arguably complex combination of CTR mode and GHASH, a MAC over the Galois field with 2^128 elements. Its wide use in important network standards like TLS 1.2 is reflected by a special instruction Intel has introduced to speed up the calculation of GHASH.
Recommendation:
Considering the importance of authentication I would recommend the following two block cipher modes for most use cases (except for disk encryption purposes): If the data is authenticated by an asymmetric signature use CBC, otherwise use GCM.
ECB should not be used if encrypting more than one block of data with the same key.
CBC, OFB and CFB are similar, however OFB/CFB is better because you only need encryption and not decryption, which can save code space.
CTR is used if you want good parallelization (ie. speed), instead of CBC/OFB/CFB.
XTS mode is the most common if you are encoding a random accessible data (like a hard disk or RAM).
OCB is by far the best mode, as it allows encryption and authentication in a single pass. However there are patents on it in USA.
The only thing you really have to know is that ECB is not to be used unless you are only encrypting 1 block. XTS should be used if you are encrypting randomly accessed data and not a stream.
You should ALWAYS use unique IV's every time you encrypt, and they should be random. If you cannot guarantee they are random, use OCB as it only requires a nonce, not an IV, and there is a distinct difference. A nonce does not drop security if people can guess the next one, an IV can cause this problem.
A formal analysis has been done by Phil Rogaway in 2011, here. Section 1.6 gives a summary that I transcribe here, adding my own emphasis in bold (if you are impatient, then his recommendation is use CTR mode, but I suggest that you read my paragraphs about message integrity versus encryption below).
Note that most of these require the IV to be random, which means non-predictable and therefore should be generated with cryptographic security. However, some require only a "nonce", which does not demand that property but instead only requires that it is not re-used. Therefore designs that rely on a nonce are less error prone than designs that do not (and believe me, I have seen many cases where CBC is not implemented with proper IV selection). So you will see that I have added bold when Rogaway says something like "confidentiality is not achieved when the IV is a nonce", it means that if you choose your IV cryptographically secure (unpredictable), then no problem. But if you do not, then you are losing the good security properties. Never re-use an IV for any of these modes.
Also, it is important to understand the difference between message integrity and encryption. Encryption hides data, but an attacker might be able to modify the encrypted data, and the results can potentially be accepted by your software if you do not check message integrity. While the developer will say "but the modified data will come back as garbage after decryption", a good security engineer will find the probability that the garbage causes adverse behaviour in the software, and then he will turn that analysis into a real attack. I have seen many cases where encryption was used but message integrity was really needed more than the encryption. Understand what you need.
I should say that although GCM has both encryption and message integrity, it is a very fragile design: if you re-use an IV, you are screwed -- the attacker can recover your key. Other designs are less fragile, so I personally am afraid to recommend GCM based upon the amount of poor encryption code that I have seen in practice.
If you need both, message integrity and encryption, you can combine two algorithms: usually we see CBC with HMAC, but no reason to tie yourself to CBC. The important thing to know is encrypt first, then MAC the encrypted content, not the other way around. Also, the IV needs to be part of the MAC calculation.
I am not aware of IP issues.
Now to the good stuff from Professor Rogaway:
Block ciphers modes, encryption but not message integrity
ECB: A blockcipher, the mode enciphers messages that are a multiple of n bits by separately enciphering each n-bit piece. The security properties are weak, the method leaking equality of blocks across both block positions and time. Of considerable legacy value, and of value as a building block for other schemes, but the mode does not achieve any generally desirable security goal in its own right and must be used with considerable caution; ECB should not be regarded as a “general-purpose” confidentiality mode.
CBC: An IV-based encryption scheme, the mode is secure as a probabilistic encryption scheme, achieving indistinguishability from random bits, assuming a random IV. Confidentiality is not achieved if the IV is merely a nonce, nor if it is a nonce enciphered under the same key used by the scheme, as the standard incorrectly suggests to do. Ciphertexts are highly malleable. No chosen ciphertext attack (CCA) security. Confidentiality is forfeit in the presence of a correct-padding oracle for many padding methods. Encryption inefficient from being inherently serial. Widely used, the mode’s privacy-only security properties result in frequent misuse. Can be used as a building block for CBC-MAC algorithms. I can identify no important advantages over CTR mode.
CFB: An IV-based encryption scheme, the mode is secure as a probabilistic encryption scheme, achieving indistinguishability from random bits, assuming a random IV. Confidentiality is not achieved if the IV is predictable, nor if it is made by a nonce enciphered under the same key used by the scheme, as the standard incorrectly suggests to do. Ciphertexts are malleable. No CCA-security. Encryption inefficient from being inherently serial. Scheme depends on a parameter s, 1 ≤ s ≤ n, typically s = 1 or s = 8. Inefficient for needing one blockcipher call to process only s bits . The mode achieves an interesting “self-synchronization” property; insertion or deletion of any number of s-bit characters into the ciphertext only temporarily disrupts correct decryption.
OFB: An IV-based encryption scheme, the mode is secure as a probabilistic encryption scheme, achieving indistinguishability from random bits, assuming a random IV. Confidentiality is not achieved if the IV is a nonce, although a fixed sequence of IVs (eg, a counter) does work fine. Ciphertexts are highly malleable. No CCA security. Encryption and decryption inefficient from being inherently serial. Natively encrypts strings of any bit length (no padding needed). I can identify no important advantages over CTR mode.
CTR: An IV-based encryption scheme, the mode achieves indistinguishability from random bits assuming a nonce IV. As a secure nonce-based scheme, the mode can also be used as a probabilistic encryption scheme, with a random IV. Complete failure of privacy if a nonce gets reused on encryption or decryption. The parallelizability of the mode often makes it faster, in some settings much faster, than other confidentiality modes. An important building block for authenticated-encryption schemes. Overall, usually the best and most modern way to achieve privacy-only encryption.
XTS: An IV-based encryption scheme, the mode works by applying a tweakable blockcipher (secure as a strong-PRP) to each n-bit chunk. For messages with lengths not divisible by n, the last two blocks are treated specially. The only allowed use of the mode is for encrypting data on a block-structured storage device. The narrow width of the underlying PRP and the poor treatment of fractional final blocks are problems. More efficient but less desirable than a (wide-block) PRP-secure blockcipher would be.
MACs (message integrity but not encryption)
ALG1–6: A collection of MACs, all of them based on the CBC-MAC. Too many schemes. Some are provably secure as VIL PRFs, some as FIL PRFs, and some have no provable security. Some of the schemes admit damaging attacks. Some of the modes are dated. Key-separation is inadequately attended to for the modes that have it. Should not be adopted en masse, but selectively choosing the “best” schemes is possible. It would also be fine to adopt none of these modes, in favor of CMAC. Some of the ISO 9797-1 MACs are widely standardized and used, especially in banking. A revised version of the standard (ISO/IEC FDIS 9797-1:2010) will soon be released [93].
CMAC: A MAC based on the CBC-MAC, the mode is provably secure (up to the birthday bound) as a (VIL) PRF (assuming the underlying blockcipher is a good PRP). Essentially minimal overhead for a CBCMAC-based scheme. Inherently serial nature a problem in some application domains, and use with a 64-bit blockcipher would necessitate occasional re-keying. Cleaner than the ISO 9797-1 collection of MACs.
HMAC: A MAC based on a cryptographic hash function rather than a blockcipher (although most cryptographic hash functions are themselves based on blockciphers). Mechanism enjoys strong provable-security bounds, albeit not from preferred assumptions. Multiple closely-related variants in the literature complicate gaining an understanding of what is known. No damaging attacks have ever been suggested. Widely standardized and used.
GMAC: A nonce-based MAC that is a special case of GCM. Inherits many of the good and bad characteristics of GCM. But nonce-requirement is unnecessary for a MAC, and here it buys little benefit. Practical attacks if tags are truncated to ≤ 64 bits and extent of decryption is not monitored and curtailed. Complete failure on nonce-reuse. Use is implicit anyway if GCM is adopted. Not recommended for separate standardization.
authenticated encryption (both encryption and message integrity)
CCM: A nonce-based AEAD scheme that combines CTR mode encryption and the raw
CBC-MAC. Inherently serial, limiting speed in some contexts. Provably secure, with good bounds, assuming the underlying blockcipher is a good PRP. Ungainly construction that demonstrably does the job. Simpler to implement than GCM. Can be used as a nonce-based MAC. Widely standardized and used.
GCM: A nonce-based AEAD scheme that combines CTR mode encryption and a GF(2128)-based universal hash function. Good efficiency characteristics for some implementation environments. Good provably-secure results assuming minimal tag truncation. Attacks and poor provable-security bounds in the presence of substantial tag truncation. Can be used as a nonce-based MAC, which is then called GMAC. Questionable choice to allow nonces other than 96-bits. Recommend restricting nonces to 96-bits and tags to at least 96 bits. Widely standardized and used.
Anything but ECB.
If using CTR, it is imperative that you use a different IV for each message, otherwise you end up with the attacker being able to take two ciphertexts and deriving a combined unencrypted plaintext. The reason is that CTR mode essentially turns a block cipher into a stream cipher, and the first rule of stream ciphers is to never use the same Key+IV twice.
There really isn't much difference in how difficult the modes are to implement. Some modes only require the block cipher to operate in the encrypting direction. However, most block ciphers, including AES, don't take much more code to implement decryption.
For all cipher modes, it is important to use different IVs for each message if your messages could be identical in the first several bytes, and you don't want an attacker knowing this.
Have you start by reading the information on this on Wikipedia - Block cipher modes of operation? Then follow the reference link on Wikipedia to NIST: Recommendation for Block Cipher Modes of Operation.
You might want to chose based on what is widely available. I had the same question and here are the results of my limited research.
Hardware limitations
STM32L (low energy ARM cores) from ST Micro support ECB, CBC,CTR GCM
CC2541 (Bluetooth Low Energy) from TI supports ECB, CBC, CFB, OFB, CTR, and CBC-MAC
Open source limitations
Original rijndael-api source - ECB, CBC, CFB1
OpenSSL - command line CBC, CFB, CFB1, CFB8, ECB, OFB
OpenSSL - C/C++ API CBC, CFB, CFB1, CFB8, ECB, OFB and CTR
EFAES lib [1] - ECB, CBC, PCBC, OFB, CFB, CRT ([sic] CTR mispelled)
OpenAES [2] - ECB, CBC
[1] http://www.codeproject.com/Articles/57478/A-Fast-and-Easy-to-Use-AES-Library
[2] https://openaes.googlecode.com/files/OpenAES-0.8.0.zip
There are new timing vulnerabilities in the CBC mode of operation.
https://learn.microsoft.com/en-us/dotnet/standard/security/vulnerabilities-cbc-mode
Generally the sole existence of a chaining mode already reduces the theoretically security as chaining widens the attack surface and also make certain kind of attacks more feasible. On the other hand, without chaining, you can at most encrypt 16 bytes (128 bits) securely, as that's the block size of AES (also of AES-192 and AES-256) and if your input data exceeds that block size, what else would you do than using chaining? Just encrypting the data block by block? That would be ECB and ECB has the worst security to begin with. Anything is more secure than ECB.
Most security analyses recommend that you always use either CBC or CTR, unless you can name any reason why you cannot use one of these two modes. And out of these two modes, they recommend CBC if security is your main concern and CTR if speed is your main concern. That's because CTR is slightly less secure than CBC because it has a higher likeliness of IV (initialization vector) collision, since the presence of the CTR counter reduces the IV value space, and attackers can change some ciphertext bits to damage exactly the same bits in plaintext (which can be an issue if the attacker knows exact bit positions in the data). On the other hand, CTR can be fully parallelized (encryption and decryption) and requires no data padding to a multiple of the block size.
That said, they still claim CFB and OFB to be secure, however slightly less secure and they have no real advantages to begin with. CFB shares the same weaknesses as CBC and on top of that isn't protected against replay attacks. OFB shares the same weaknesses as CTR but cannot be parallelized at all. So CFB is like CBC without padding but less secure and OFB is like CTR but without its speed benefits and a wider attack surface.
There is only one special case where you may want to use OFB and that's if you need to decrypt data in realtime (e.g. a stream of incoming data) on hardware that is actually too weak for doing so, yet you will know the decryption key way ahead of time. As in that case, you can pre-calculate all the XOR blocks in advance and store them somewhere and when the real data arrives, the entire decryption is just XOR'ing the incoming data with the stored XOR blocks and that requires very little computational power. That's the one thing you can do with OFB that you cannot do with any other chaining.
For performance analysis, see this paper.
For a detailed evaluation, including security, see this paper.
I know one aspect: Although CBC gives better security by changing the IV for each block, it's not applicable to randomly accessed encrypted content (like an encrypted hard disk).
So, use CBC (and the other sequential modes) for sequential streams and ECB for random access.

Resources