What is half-vector of light in glsl? - math

I'm playing with per pixel lighting shaders and i don't know one thing: What is half vector of light source ?
vec3 halfVector = normalize(gl_LightSource[1].halfVector.xyz);
I would like i you can explain it in math rows, i understand math better than words :)

From this post:
A "halfway vector" (if you mean that by "half vector") is the unit vector at the half angle between two other vectors. Normally the halfway vector [...] is computed between the vector to the viewer v and the light source l:
h := ( v + l ) / || v + l ||
The half vector therefore is the unit angle bisector of view- and light vector.
Edit: For a complete explanation of the lighting model including the half vector, just see the Blinn-Phong wikipedia article

The the answer by Dario is correct, but since the question was for GLSL, here is the appropriate code:
vec3 hf = normalize(v + l);
Generally the "THE" half vector is the vector between the light and the view vector. It is generally used as input to the specular bit of the Blinn-Phong equations.

this was my solution:
vec3 halfVector = normalize(lightDirection + viewDirection);
EDIT: it is not 100% correct but working when you want to do it more simple.

Related

Vectors and Scaler in games

How can we use vector and scalar in games? What benefit from that.
Could someone please indicate precisely the difference between a scalar and a vector in games field ? I find no matter how many times I try to understand but I maybe need examples for that.
A scalar is just another word for a number. The distinction is that a scalar is a number that is part of a vector. There is nothing special about a scalar.
A vector is a set of numbers (one or more) that define something, in the most common case you have 2 numbers representing a 2D vector or 3 numbers representing a 3D vector. The abstract notion for a vector is simply an arrow.
Take a piece of graph paper. Select any point on that paper and call it the origin. Its coordinate will be x = 0, y = 0. Now draw a straight line from that point in any direction and any length. To describe that arrow you need to define the vector. Count how far across the page the end of the arrow is from the start (origin) and that is the x component. Then how far up the page and that is the y component.
You have just created a vector that has two numbers (x,y) that completely describe the arrow on the paper. This type of vector always starts at zero. You can also describe the vector by its direction (ie north, east, south...) and length.
In 3D you need 3 numbers to describe any arrow. (x,y,z)
Vectors are very handy. You can use a vector to describe how fast something is moving and in what direction. The vector represents a little arrow that starts where the object is now and ends where the object will be in the next time unit.
Thus an object at coordinate x,y has a vector velocity(0.2,0.3). To calculate the position of the object in the next time unit just add the vector to the coordinate
newXPos = currentXPos + velocityVectorX
newYPos = currentYPos + velocityVectorY
If you want to slow the speed by half you can multiply the vector by 0.5
velocityVectorX = velocityVectorX * 0.5
velocityVectorY = velocityVectorY * 0.5
You do the same to increase the speed.
velocityVectorX = velocityVectorX * 2
velocityVectorY = velocityVectorY * 2
You may have an object in 3D space that has many forces acting on it. There is gravity a vector (arrow) pointing down (G). The force of the air resistance pointing up (R). The current velocity another arrow pointing in the direction it is traveling (V). You can have as many as you like (need) to describe all the forces that push and pull at the object. When you need to calculate the position of the object for the next instance in time (say one second) you just add all the force vectors together to get the total force as a vector and add that to the objects position
Object.x = Object.x + G.x + R.x + V.x;
Object.y = Object.y + G.y + R.y + V.y;
Object.z = Object.z + G.y + R.z + V.z;
If you just want the velocity
V.x = V.x + G.x + R.x;
V.y = V.y + G.y + R.y;
V.z = V.z + G.y + R.z;
That is the new velocity in one second.
There are many things that can be done with a vector. A vector can be used to point away from a surface in 3D, this vector is called a surface normal. The you create a vector from a point on that surface pointing to a light. The cosine of the angle between the two vectors is how much light the surface will reflect.
You can use a vector to represent the three direction in space an object has. Say a box, there is a 3D vector pointing along the width, another along the height and the last along the depth. The length of each vector represents the length of each side. You can make another vector to represent how far the corner of the box is from the origin (any known point) In 3D these 4 vectors are used to represent the object and is called a transformation matrix (just another type of vector made up of vectors)
The list of things vectors can do is endless.
The basics is just like number, you can add, subtract, multiply and divide and vector.
Then there are a host of special functions for vectors, normalize, transform, dot product and cross product to name but a few. For these things people normally use a library that does all this for you. My view is that if you really want to learn about vectors and how they are used write your own vector library at some point until then use a library.
Hope that cleared the mud a little bit for you, it is always difficult to describe something you have used for a long time to someone that is new to it so feel free to ask questions in the comments if you need.

Vector Explanation

I have been following this article on Frustum culling, and I need some help understanding the vector math behind it. More specifically, what are the vectors of 'up' and 'right' he talks about? What values do they hold? Sorry for the brief and unexciting question, but I am really stuck on this. Any help is appreciated! Thanks
From the article:
A couple more unit vectors are required, namely the up vector and the right vector. The former is obtained by normalizing the vector (ux,uy,uz) (the components of this vector are the last parameters of the gluLookAt function); the latter is obtained with the cross product between the up vector and the d vector.
up is equal to (ux, uy, uz) / ||(ux, uy, uz)||, which is just a unit vector pointing the same direction as (ux, uy, uz).
It's equal to (ux / sqrt(ux^2 + uy^2 + uz^2), uy / sqrt(ux^2 + uy^2 + uz^2), uz / sqrt(ux^2 + uy^2 + uz^2))
right is equal to up x d. I don't really want to expand that out.

The X angle between two 3D vectors?

I have two 3D vectors called A and B that both only have a 3D position. I know how to find the angle along the unit circle ranging from 0-360 degrees with the atan2 function by doing:
EDIT: (my atan2 function made no sense, now it should find the "y-angle" between 2 vectors):
toDegrees(atan2(A.x-B.x,A.z-B.z))+180
But that gives me the Y angle between the 2 vectors.
I need to find the X angle between them. It has to do with using the x, y and z position values. Not the x and z only, because that gives the Y angle between the two vectors.
I need the X angle, I know it sounds vague but I don't know how to explain. Maybe for example you have a camera in 3D space, if you look up or down than you rotate the x-axis. But now I need to get the "up/down" angle between the 2 vectors. If I rotate that 3D camera along the y-axis, the x-axis doens't change. So with the 2 vectors, no matter what the "y-angle" is between them, the x-angle between the 2 vectors wil stay the same if y-angle changes because it's the "up/down" angle, like in the camara.
Please help? I just need a line of math/pseudocode, or explanation. :)
atan2(crossproduct.length,scalarproduct)
The reason for using atan2 instead of arccos or arcsin is accuracy. arccos behaves very badly close to 0 degrees. Small computation errors in argument will lead to disproportionally big errors in result. arcsin has same problem close to 90 degrees.
Computing the altitude angle
OK, it might be I finally understood your comment below about the result being independent of the y angle, and about how it relates to the two vectors. It seems you are not really interested in two vectors and the angle between these two, but instead you're interested in the difference vector and the angle that one forms against the horizontal plane. In a horizontal coordinate system (often used in astronomy), that angle would be called “altitude” or “elevation”, as opposed to the “azimuth” you compute with the formula in your (edited) question. “altitude” closely relates to the “tilt” of your camera, whereas “azimuth” relates to “panning”.
We still have a 2D problem. One coordinate of the 2D vector is the y coordinate of the difference vector. The other coordinate is the length of the vector after projecting it on the horizontal plane, i.e. sqrt(x*x + z*z). The final solution would be
x = A.x - B.x
y = A.y - B.y
z = A.z - B.z
alt = toDegrees(atan2(y, sqrt(x*x + z*z)))
az = toDegrees(atan2(-x, -z))
The order (A - B as opposed to B - A) was chosen such that “A above B” yields a positive y and therefore a positive altitude, in accordance with your comment below. The minus signs in the azimuth computation above should replace the + 180 in the code from your question, except that the range now is [-180, 180] instead of your [0, 360]. Just to give you an alternative, choose whichever you prefer. In effect you compute the azimuth of B - A either way. The fact that you use a different order for these two angles might be somewhat confusing, so think about whether this really is what you want, or whether you want to reverse the sign of the altitude or change the azimuth by 180°.
Orthogonal projection
For reference, I'll include my original answer below, for those who are actually looking for the angle of rotation around some fixed x axis, the way the original question suggested.
If this x angle you mention in your question is indeed the angle of rotation around the x axis, as the camera example suggests, then you might want to think about it this way: set the x coordinate to zero, and you will end up with 2D vectors in the y-z plane. You can think of this as an orthogonal projection onto said plain. Now you are back to a 2D problem and can tackle it there.
Personally I'd simply call atan2 twice, once for each vector, and subtract the resulting angles:
toDegrees(atan2(A.z, A.y) - atan2(B.z, B.y))
The x=0 is implicit in the above formula simply because I only operate on y and z.
I haven't fully understood the logic behind your single atan2 call yet, but the fact that I have to think about it this long indicates that I wouldn't want to maintain it, at least not without a good explanatory comment.
I hope I understood your question correctly, and this is the thing you're looking for.
Just like 2D Vectors , you calculate their angle by solving cos of their Dot Product
You don't need atan, you always go for the dot product since its a fundamental operation of vectors and then use acos to get the angle.
double angleInDegrees = acos ( cos(theta) ) * 180.0 / PI;

Signed angle between two vectors without a reference plane

(In three dimensions) I'm looking for a way to compute the signed angle between two vectors, given no information other than those vectors. As answered in this question, it is simple enough to compute the signed angle given the normal of a plane to which the vectors are perpendicular. But I can find no way to do this without that value. It's obvious that the cross product of two vectors produces such a normal, but I've run into the following contradiction using the answer above:
signed_angle(x_dir, y_dir) == 90
signed_angle(y_dir, x_dir) == 90
where I would expect the second result to be negative. This is due to the fact that the cross product cross(x_dir, y_dir) is in the opposite direction of cross(y_dir, x_dir), given the following psuedocode with normalized input:
signed_angle(Va, Vb)
magnitude = acos(dot(Va, Vb))
axis = cross(Va, Vb)
dir = dot(Vb, cross(axis, Va))
if dir < 0 then
magnitude = -magnitude
endif
return magnitude
I don't believe dir will ever be negative above.
I've seen the same problem with the suggested atan2 solution.
I'm looking for a way to make:
signed_angle(a, b) == -signed_angle(b, a)
The relevant mathematical formulas:
dot_product(a,b) == length(a) * length(b) * cos(angle)
length(cross_product(a,b)) == length(a) * length(b) * sin(angle)
For a robust angle between 3-D vectors, your actual computation should be:
s = length(cross_product(a,b))
c = dot_product(a,b)
angle = atan2(s, c)
If you use acos(c) alone, you will get severe precision problems for cases when the angle is small. Computing s and using atan2() gives you a robust result for all possible cases.
Since s is always nonnegative, the resulting angle will range from 0 to pi. There will always be an equivalent negative angle (angle - 2*pi), but there is no geometric reason to prefer it.
Signed angle between two vectors without a reference plane
angle = acos(dotproduct(normalized(a), normalized(b)));
signed_angle(a, b) == -signed_angle(b, a)
I think that's impossible without some kind of reference vector.
Thanks all. After reviewing the comments here and looking back at what I was trying to do, I realized that I can accomplish what I need to do with the given, standard formula for a signed angle. I just got hung up in the unit test for my signed angle function.
For reference, I'm feeding the resulting angle back into a rotate function. I had failed to account for the fact that this will naturally use the same axis as in signed_angle (the cross product of input vectors), and the correct direction of rotation will follow from which ever direction that axis is facing.
More simply put, both of these should just "do the right thing" and rotate in different directions:
rotate(cross(Va, Vb), signed_angle(Va, Vb), point)
rotate(cross(Vb, Va), signed_angle(Vb, Va), point)
Where the first argument is the axis of rotation and second is the amount to rotate.
If all you want is a consistent result, then any arbitrary way of choosing between a × b and b × a for your normal will do. Perhaps pick the one that's lexicographically smaller?
(But you might want to explain what problem you are actually trying to solve: maybe there's a solution that doesn't involve computing a consistent signed angle between arbitrary 3-vectors.)

Make character escape from shot

Hello all math masters, I got a problem for you:
I have a 2D game (top down), and I would like to make the character escape from a shot, but not just walk away from the shot (I mean, don't be pushed by the shot), I want it to have a good dodging skills.
The variables are:
shotX - shot x position
shotY - shot y position
shotSpeedX - shot x speed
shotSpeedY - shot x speed
charX - character x position
charY - character y position
keyLeft - Set to true to make the character press the to left key
keyRight - Set to true to make the character press the to right key
keyUp - Set to true to make the character press the to up key
keyDown - Set to true to make the character press the down key
I can understand the following languages:
C/C++
Java
Actionscript 2/3
Javascript
I got this code (Actionscript 3), but sometimes it doesn't work:
var escapeToLeft:Boolean = false;
var r:Number = Math.atan2(0 - shotSpeedY, 0 - shotSpeedX)
var angle:Number = Math.atan2(charY - (shotY + shotSpeedY), charX - (shotX + shotSpeedX));
var b:Number = diepix.fixRotation(r-angle); // This function make the number between -180 and 180
if(b<0) {
escapeToLeft = true;
}
r += (escapeToLeft?1:0 - 1) * Math.PI / 2;
var cx:Number = Math.cos(r);
var cy:Number = Math.sin(r);
if(cx < 0.0) {
keyLeft = true;
}else {
keyRight = true;
}
if(cy < 0.0) {
keyUp = true;
}else {
keyDown = true;
}
Some observations:
Optimal dodging probably involves moving at a 90 degree angle from the bullets direction. That way, you get out of harms way the quickest.
If you do err, you want to err in the direction of the bullet, as that buys you time.
you can calculate 90 degrees to bullet direction with the scalar product
find the closest compass direction to the calculated optimal angle (4 possible answers)
are you allowed to go up and left at the same time? Now you have 8 possible answers to a bullet
bonus points for dodging in optimal direction according to second point
The scalar product of two vectors (ax, ay) and (bx, by) is ax * bx + ay * by. This is 0 if they are orthogonal (90 degrees). So, given the bullet (ax, ay), find a direction (bx, by) to run that has a scalar product of 0:
ax * bx must equal ay * by, so (bx, by) = (-ax, -ay)
Now to find the closest point on the compass for (bx, by), the direction you would like to run to. You can probably figure out the technique from the answer to a question of mine here on SO: How to "snap" a directional (2D) vector to a compass (N, NE, E, SE, S, SW, W, NW)? (note, thow, that I was using a wonky coordinate system there...)
If you have only 4 compass directions, your easiest path is to take:
max(abs(bx), abs(by))
The bigger vector component will show you the general direction to go - for
bx positive: right
bx negative: left
by positive: up (unless (0, 0) is top left with y positive in bottom left...)
by negative: down
I guess you should be able to come up with the rest on your own - otherwise, good luck on writing your own game!
I am not following what the line
var angle:Number = Math.atan2(charY - (shotY + shotSpeedY), charX - (shotX + shotSpeedX));
is supposed to be doing. The vector ( charY - shotY, charX - shotX ) would be the radius vector pointing from the location of the shot to the location of the character. But what do you have when you subtract a speed vector from that, as you are doing in this line?
It seems to me that what you need to do is:
Calculate the radius vector (rY, rX) where rY = shotY - charY; rX = xhotX - charX
Calculate the optimal direction of jump, if the character weren't constrained to a compass point.
Start with a vector rotated 90 degrees from the shot-character radius vector. Say vJump = ( rX, -rY ). (I think Daren has this calculation slightly wrong--you are transposing the two coordinates, and reversing one of their signs.)
The character should either wants to jump in the direction of vJump or the direction of -vJump. To know which, take the scalar product of vJump with (shotSpeedY, shotSpeedX). If this is positive, then the character is jumping towards the bullet, which you don't want, obviously, so reverse the sign of both components of vJump in this case.
Jump in the permissible direction that is closest to vJump. In the code you listed, you are constrained to jump in one of the diagonal directions--you will never jump in one of the cardinal directions. This may in fact be the mathematically optimal solution, since the diagonal jumps are probably longer than the cardinal jumps by a factor of 1.414.
If your jumps are actually equal distance, however, or if you just don't like how it looks if the character always jumps diagonally, you can test each of the eight cardinal and intermediate directions by calculating the scalar product between vJump and each of the eight direction vectors (0,1), (0.7071,0.7071), (1,0), (0.7071,-0.7071), etc. Take the direction that gives you the biggest positive scalar product. Given the patterns present, with some clever programming you can do this in fewer than eight tests.
Note that this algorithm avoids any math more complicated than addition and multiplication, so will likely have much better performance than something that requires trig functions.

Resources