Characteristics of an Initialization Vector - encryption

I'm by no means a cryptography expert, I have been reading a few questions around Stack Overflow and on Wikipedia but nothing is really 'clear cut' in terms of defining an IV and its usage.
Points I have discovered:
An IV is prepended to a plaintext message in order to strengthen the encryption
The IV is truely random
Each message has its own unique IV
Timestamps and cryptographic hashes are sometimes used instead of random values, but these are considered to be insecure as timestamps can be predicted
One of the weaknesses of WEP (in 802.11) is the fact that the IV will reset after a specific amount of encryptions, thus repeating the IV
I'm sure there are many other points to be made, can anyone think of any other characteristics which I've missed?

An IV is "a public value which impacts the encryption process". The point of the IV is often to "randomize" the input data to avoid leaking information about which input blocks were identical in the plaintext (because identical blocks happen quite a lot in "real-life" data).
Whether the IV is input by pre-pending it or otherwise depends on the algorithm in which it is used. For symmetric encryption with a block cipher in CBC mode, the IV is pre-pended to the encrypted data (CBC uses, for each block, the previous encrypted block; the IV plays the role of the encrypted block -1).
An IV is distinct from a key in that a key is secret whereas the IV needs not be secret; the IV is often transmitted along the encrypted message. Conversely, the IV must be distinct for every message, whereas the key may be reused. Actually, the IV must be distinct for every message encrypted with the same key; if you use a new key for every message then you can use a constant, fixed IV. Note that the IV needs not be secret, but you can keep it secret if you wish. But the sender and the receiver must agree on the IV, and since the IV changes for every message then it can be inconvenient, in some setups, to keep IV secret.
Whether the IV must be uniformly random, or simply non-repeating, depends on the algorithm. CBC requires a random IV. Other modes are less picky, e.g. GCM. You may derive the key and the IV from a "master key", using a proper one-way function. This is what SSL does. It is more tricky that it seems, do not try it at home.
Repeating the IV is one of the numerous sins of WEP.

Related

Does the IV of AES-128-cbc need to be random during encryption and decryption?

I am using node and the crypto module to encrypt and decrypt a large binary file. I encrypt the file using crypto.createCipheriv and decrypt it using crypto.createDecipheriv.
For the encryption I use a random IV as follows:
const iv = crypto.randomBytes(16);
const encrypt = crypto.createCipheriv('aes-128-cbc', key, iv)
What I don't understand, do I need to pass a random IV for createDecipheriv as well? The SO here says:
The IV needs to be identical for encryption and decryption.
Can the IV be static? And if it can't, is it considered to be a secret? Where would I store the IV? In the payload?
If I use different random IVs for the encryption and decryption, my payload gets decrypted but the first 16 bytes are corrupt. This means, it looks like the IV needs to be the same but from a security perspective there is also not much value as the payload is decrypted except 16 bytes.
Can anyone elaborate what the go-to approach is? Thanks for your help!
The Key+IV pair must never be duplicated on two encryptions using CBC. Doing so leaks information about the first block (in all cases), and is creates duplicate cipher texts (which is a problem if you ever encrypt the same message prefix twice).
So, if your key changes for every encryption, then your IV could be static. But no one does that. They have a key they reuse. So the IV must change.
There is no requirement that it be random. It just shouldn't repeat and it must not be predictable (in cases where the attacker can control the messages). Random is the easiest way to do that. Anything other than random requires a lot of specialized knowledge to get right, so use random.
Reusing a Key+IV pair in CBC weakens the security of the cipher, but does not destroy it, as in CTR. IV reused with CTR can lead to trivial decryptions. In CBC, it generally just leaks information. It's a serious problem, but it is not catastrophic. (Not all insecure configurations are created equal.)
The IV is not a secret. Everyone can know it. So it is typically prepended to the ciphertext.
For security reasons, the IV needs to be chosen to meet cryptographic randomness security requirements (i.e. use crypto.randomBytes( ) in node). This was shown in Phil Rogaway's research paper. The summary is in Figure 1.2 of the paper, which I transcribe here:
CBC (SP 800-38A): An IV-based encryption scheme, the mode is secure as a probabilistic encryption scheme, achieving indistinguishability from random bits, assuming a random IV. Confidentiality is not achieved if the IV is merely a nonce, nor if it is a nonce enciphered under the same key used by the scheme, as the standard incorrectly suggests to do.
The normal way to implement this is to include the IV prepended to the ciphertext. The receiving party extracts the IV and then decrypts the ciphertext. The IV is not a secret, instead it is just used to bring necessary security properties into the mode of operation.
However, be aware that encryption with CBC does not prevent people from tampering with the data. If an attacker fiddles with ciphertext bits within a block, it affects exactly two plaintext blocks, one of which is in a very controlled way.
To make a very long story short, GCM is a better mode to use to prevent such abuses. In that case, you do not need a random IV, but instead you must never let the IV repeat (in cryptography, we call this property a "nonce"). Luke Park gives an example of how to implement it, here. He uses randomness for the nonce, which achieves the nonce property for all practical purposes (unless you are encrypting 2^48 texts, which is crazy large).
But whatever mode you do, you must never repeat an IV for a given key, which is a very common mistake.

How to decrypt AES on the server side? [duplicate]

If I am using Rijndael CBC mode, I have no idea why we would need salt.
My understanding is even if people know the password, but he cannot get the data without IV.
So from my perspective, password + IV seem to be sufficent secure.
Do I get anything wrong?
Yes, you need all of these things.
Salt (and an "iteration count") is used to derive a key from the password. Refer to PKCS #5 for more information. The salt and iteration count used for key derivation do not have to be secret. The salt should be unpredictable, however, and is best chosen randomly.
CBC mode requires an initialization vector. This is a block of random data produced for each message by a cryptographic random number generator. It serves as the dummy initial block of ciphertext. Like the key-derivation salt, it doesn't have to be kept secret, and is usually transmitted along with the cipher text.
The password, and keys derived from it, must be kept secret. Even if an attacker has the parameters for key derivation and encryption, and the ciphertext, he can do nothing without the key.
Update:
Passwords aren't selected randomly; some passwords are much more likely than others. Therefore, rather than generating all possible passwords of a given length (exhaustive brute-force search), attackers maintain a list of passwords, ordered by decreasing probability.
Deriving an encryption key from a password is relatively slow (due to the iteration of the key derivation algorithm). Deriving keys for a few million passwords could take months. This would motivate an attacker to derive the keys from his most-likely-password list once, and store the results. With such a list, he can quickly try to decrypt with each key in his list, rather than spending months of compute time to derive keys again.
However, each bit of salt doubles the space required to store the derived key, and the time it takes to derive keys for each of his likely passwords. A few bytes of salt, and it quickly becomes infeasible to create and store such a list.
Salt is necessary to prevent pre-computation attacks.
An IV (or nonce with counter modes) makes the same plain text produce different cipher texts. The prevents an attacker from exploiting patterns in the plain text to garner information from a set of encrypted messages.
An initialization vector is necessary to hide patterns in messages.
One serves to enhance the security of the key, the other enhances the security of each message encrypted with that key. Both are necessary together.
First things first: Rijndael does not have a "password" in CBC mode. Rijndael in CBC mode takes a buffer to encrypt or decrypt, a key, and an IV.
A "salt" is typically used for encrypting passwords. The salt is added to the password that is encrypted and stored with the encrypted value. This prevents someone from building a dictionary of how all passwords encrypt---you need to build a dictionary of how all passwords encrypt for all salts. That was actually possible with the old Unix password encryption algorithm, which only used a 12-bit salt. (It increased the work factor by 4096). With a 128-bit salt it is not possible.
Someone can still do a brute-force attack on a specific password, of course, provided that they can retrieve the encrypted password.
However, you have an IV, which does pretty much the same thing that a Salt does. You don't need both. Or, rather, the IV is your salt.
BTW, these days we call "Rijndael" AES.
A salt is generally used when using a hash algorithm. Rijndael is not a hash, but a two-way encryption algorithm. Ergo, a salt is not necessarily needed for encrypting the data. That being said, a salted hash of a password may be used as the Key for encrypting data. For what you're looking for, you might wish to look at hybrid cryptosystems.
The Key should be considered private and not transmitted with your encrypted data while the IV may be transmitted with the encrypted data.

Key salt and initial value AES

I am creating an encryption scheme with AES in cbc mode with a 256-bit key. Before I learned about CBC mode and initial values, I was planning on creating a 32-bit salt for each act of encryption and storing the salt. The password/entered key would then be padded with this salt up to 32 bits.
ie. if the pass/key entered was "tree," instead of padding it with 28 0s, it would be padded with the first 28 chars of this salt.
However, this was before I learned of the iv, also called a salt in some places. The question for me has now arisen as to whether or not this earlier method of salting has become redundant in principle with the IV. This would be to assume that the salt and the iv would be stored with the cipher text and so a theoretical brute force attack would not be deterred any.
Storing this key and using it rather than 0s is a step that involves some effort, so it is worth asking I think whether or not it is a practically useless measure. It is not as though there could be made, with current knowledge, any brute-force decryption tables for AES, and even a 16 bit salt pains the creation of md5 tables.
Thanks,
Elijah
It's good that you know CBC, as it is certainly better than using ECB mode encryption (although even better modes such as the authenticated modes GCM and EAX exist as well).
I think there are several things that you should know about, so I'll explain them here.
Keys and passwords are not the same. Normally you create a key used for symmetric encryption out of a password using a key derivation function. The most common one discussed here is PBKDF2 (password based key derivation function #2), which is used for PBE (password based encryption). This is defined in the latest, open PKCS#5 standard by RSA labs. Before entering the password need to check if the password is correctly translated into bytes (character encoding).
The salt is used as another input of the key derivation function. It is used to prevent brute force attacks using "rainbow tables" where keys are pre-computed for specific passwords. Because of the salt, the attacker cannot use pre-computed values, as he cannot generate one for each salt. The salt should normally be 8 bytes (64 bits) or longer; using a 128 bit salt would give you optimum security. The salt also ensures that identical passwords (of different users) do not derive the same key.
The output of the key derivation function is a secret of dkLen bytes, where dkLen is the length of the key to generate, in bytes. As an AES key does not contain anything other than these bytes, the AES key will be identical to the generated secret. dkLen should be 16, 24 or 32 bytes for the key lengths of AES: 128, 192 or 256 bits.
OK, so now you finally have an AES key to use. However, if you simply encrypt each plain text block with this key, you will get identical result if the plain text blocks are identical. CBC mode gets around this by XOR'ing the next plain text block with the last encrypted block before doing the encryption. That last encrypted block is the "vector". This does not work for the first block, because there is no last encrypted block. This is why you need to specify the first vector: the "initialization vector" or IV.
The block size of AES is 16 bytes independent of the key size. So the vectors, including the initialization vector, need to be 16 bytes as well. Now, if you only use the key to encrypt e.g. a single file, then the IV could simply contain 16 bytes with the value 00h.
This does not work for multiple files, because if the files contain the same text, you will be able to detect that the first part of the encrypted file is identical. This is why you need to specify a different IV for each encryption you perform with the key. It does not matter what it contains, as long as it is unique, 16 bytes and known to the application performing the decryption.
[EDIT 6 years later] The above part is not entirely correct: for CBC the IV needs to be unpredictable to an attacker, it doesn't just need to be unique. So for instance a counter cannot be used.
Now there is one trick that might allow you to use all zero's for the IV all the time: for each plain text you encrypt using AES-CBC, you could calculate a key using the same password but a different salt. In that case, you will only use the resulting key for a single piece of information. This might be a good idea if you cannot provide an IV for a library implementing password based encryption.
[EDIT] Another commonly used trick is to use additional output of PBKDF2 to derive the IV. This way the official recommendation that the IV for CBC should not be predicted by an adversary is fulfilled. You should however make sure that you do not ask for more output of the PBKDF2 function than that the underlying hash function can deliver. PBKDF2 has weaknesses that would enable an adversary to gain an advantage in such a situation. So do not ask for more than 256 bits if SHA-256 is used as hash function for PBKDF2. Note that SHA-1 is the common default for PBKDF2 so that only allows for a single 128 bit AES key.
IV's and salts are completely separate terms, although often confused. In your question, you also confuse bits and bytes, key size and block size and rainbow tables with MD5 tables (nobody said crypto is easy). One thing is certain: in cryptography it pays to be as secure as possible; redundant security is generally not a problem, unless you really (really) cannot afford the extra resources.
When you understand how this all works, I would seriously you to find a library that performs PBE encryption. You might just need to feed this the password, salt, plain data and - if separately configured- the IV.
[Edit] You should probably look for a library that uses Argon2 by now. PBKDF2 is still considered secure, but it does give unfair advantage to an attacker in some cases, letting the attacker perform fewer calculations than the regular user of the function. That's not a good property for a PBKDF / password hash.
If you are talking about AES-CBC then it is an Initialisation Vector (IV), not Salt. It is common practice to send the IV in clear as the first block of the encyphered message. The IV does not need to be kept secret. It should however be changed with every message - a constant IV means that effectively your first block is encrypted in ECB mode, which is not properly secure.

Encrypted data in URL and salt

When passing symetrically encrypted data in a URL or possibly storing encrypted data in a cookie, is it resonable and/or nessassary and/or possible to also pass the Symetric Encryption IV (Salt) in the same URL? Is the idea of using Salt even valid in a stateless environment such as the web?
(I understand how salt works in a database given a list of names or accounts etc. but we can't save the salt given that we are passing data in a stateless environment.
Assuming a server side password that is used to encrypt data and then decrypt data, how can Salt be used? I guess a separate IV could be passed in the query string but is publicly exposing the salt ok?
Or can one generate a key and IV from the hash of a "password". Assuming the IV and Key come from non-overlapping areas of the hash, is this ok? (I realize that the salt / key will always be the same for a given password.)
EDIT: Typically using AES.
It is encouraged to generate random IVs for each encryption routine, and they can be passed along safely with the cipher text.
Edit:
I should probably ask what type of information you're storing and why you're using a salt with AES encryption, since salts are typically used for hashing, not symmetric encryption. If the salt is publicly available, it defeats the purpose of having it.
What you really need to do is ensure the strength of your key, because if an attacker has the salt, IV, and cipher text, a brute-force attack can easily be done on weaker keys.
You should not generate an initialization vector from the secret key. The initialization vector should be unpredictable for a given message; if you generated it from the key (or a password used to generate a key), the IV will always be the same, which defeats its purpose.
The IV doesn't need to be secret, however. It's quite common to send it with the ciphertext, unprotected. Incorporating the IV in the URL is a lot easier than trying to keep track of the IV for a given link in some server-side state.
Salt and IVs have distinct applications, but they do act in similar ways.
Cryptographic "salt" is used in password-based key derivation algorithms; storing a hashed password for authentication is a special case of this function. Salt causes the same password to yield different hashes, and thwarts "dictionary attacks", where a hacker has pre-computed hash values for common passwords, and built a "reverse-lookup" index so that they can quickly discover a password for a given hash. Like an IV, the salt used is not a secret.
An initialization vector is used with block ciphers like DES and AES in a feedback mode like CBC. Each block is combined with the next block when it is encrypted. For example, under CBC, the previous block cipher text is XOR-ed with the plain text of the current block before encryption. The IV is randomly generated to serve as a dummy initial block to bootstrap the process.
Because a different IV is (or should be, at least) chosen for each message, when the same message is encrypted with the same key, the resulting cipher text is different. In that sense, an IV is very similar to a salt. A cryptographic random generator is usually the easiest and most secure source for a salt or an IV, so they have that similarity too.
Cryptography is very easy to mess up. If you are not confident about what you are doing, you should consider the value of the information you are protecting, and budget accordingly to get the training or consultation you need.

Should I use an initialization vector (IV) along with my encryption?

Is it recommended that I use an initialization vector to encrypt/decrypt my data? Will it make things more secure? Is it one of those things that need to be evaluated on a case by case basis?
To put this into actual context, the Win32 Cryptography function, CryptSetKeyParam allows for the setting of an initialization vector on a key prior to encrypting/decrypting. Other API's also allow for this.
What is generally recommended and why?
An IV is essential when the same key might ever be used to encrypt more than one message.
The reason is because, under most encryption modes, two messages encrypted with the same key can be analyzed together. In a simple stream cipher, for instance, XORing two ciphertexts encrypted with the same key results in the XOR of the two messages, from which the plaintext can be easily extracted using traditional cryptanalysis techniques.
A weak IV is part of what made WEP breakable.
An IV basically mixes some unique, non-secret data into the key to prevent the same key ever being used twice.
In most cases you should use IV. Since IV is generated randomly each time, if you encrypt same data twice, encrypted messages are going to be different and it will be impossible for the observer to say if this two messages are the same.
Take a good look at a picture (see below) of CBC mode. You'll quickly realize that an attacker knowing the IV is like the attacker knowing a previous block of ciphertext (and yes they already know plenty of that).
Here's what I say: most of the "problems" with IV=0 are general problems with block encryption modes when you don't ensure data integrity. You really must ensure integrity.
Here's what I do: use a strong checksum (cryptographic hash or HMAC) and prepend it to your plaintext before encrypting. There's your known first block of ciphertext: it's the IV of the same thing without the checksum, and you need the checksum for a million other reasons.
Finally: any analogy between CBC and stream ciphers is not terribly insightful IMHO.
Just look at the picture of CBC mode, I think you'll be pleasantly surprised.
Here's a picture:
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
link text
If the same key is used multiple times for multiple different secrets patterns could emerge in the encrypted results. The IV, that should be pseudo random and used only once with each key, is there to obfuscate the result. You should never use the same IV with the same key twice, that would defeat the purpose of it.
To not have to bother keeping track of the IV the simplest thing is to prepend, or append it, to the resulting encrypted secret. That way you don't have to think much about it. You will then always know that the first or last N bits is the IV.
When decrypting the secret you just split out the IV, and then use it together with the key to decrypt the secret.
I found the writeup of HTTP Digest Auth (RFC 2617) very helpful in understanding the use and need for IVs / nonces.
Is it one of those things that need to be evaluated on a case by case
basis?
Yes, it is. Always read up on the cipher you are using and how it expects its inputs to look. Some ciphers don't use IVs but do require salts to be secure. IVs can be of different lengths. The mode of the cipher can change what the IV is used for (if it is used at all) and, as a result, what properties it needs to be secure (random, unique, incremental?).
It is generally recommended because most people are used to using AES-256 or similar block ciphers in a mode called 'Cipher Block Chaining'. That's a good, sensible default go-to for a lot of engineering uses and it needs you to have an appropriate (non-repeating) IV. In that instance, it's not optional.
The IV allows for plaintext to be encrypted such that the encrypted text is harder to decrypt for an attacker. Each bit of IV you use will double the possibilities of encrypted text from a given plain text.
For example, let's encrypt 'hello world' using an IV one character long. The IV is randomly selected to be 'x'. The text that is then encrypted is then 'xhello world', which yeilds, say, 'asdfghjkl'. If we encrypt it again, first generate a new IV--say we get 'b' this time--and encrypt like normal (thus encrypting 'bhello world'). This time we get 'qwertyuio'.
The point is that the attacker doesn't know what the IV is and therefore must compute every possible IV for a given plain text to find the matching cipher text. In this way, the IV acts like a password salt. Most commonly, an IV is used with a chaining cipher (either a stream or block cipher). In a chaining block cipher, the result of each block of plain text is fed to the cipher algorithm to find the cipher text for the next block. In this way, each block is chained together.
So, if you have a random IV used to encrypt the plain text, how do you decrypt it? Simple. Pass the IV (in plain text) along with your encrypted text. Using our fist example above, the final cipher text would be 'xasdfghjkl' (IV + cipher text).
Yes you should use an IV, but be sure to choose it properly. Use a good random number source to make it. Don't ever use the same IV twice. And never use a constant IV.
The Wikipedia article on initialization vectors provides a general overview.

Resources