Functional Programming better to manipulate lists of database data? - functional-programming

I'm watching some lecture's on Functional Programming and the main 'data structure' so to say, but there really isn't one in FP, is lists, so my question is: when one deals a lot with database's and 'lists' of data, then is Functional Programming not superior to OOP?

One of the biggest improvements in reading from databases in recent years is LINQ. LINQ is actually based a lot on functional programming principles. In fact SQL is also a very functional style language.
I see no problems with reading data from a database using a functional language.
Now modifying the database... that's a different story. I'll leave that for another day. :)

Well, Lisp deals with lists, but the lists are heterogenous, and can well represent a tree. Other languages, like Haskell, give you structured types, named and unnamed, and - in contrast to lisp - allow for static type checking.
One thing that pure functional languages do not have is the notion of stateful variables that can be assigned. Some Lisp implementations provide such state - you get a setq opeator -, while Haskell doesn't. Reading and writing databases, however, is all about having state - and lots of it, that's what databases are for - and about reading from and writing into it. So, operating on a database is quite the opposite of using a functional language.
It does, however, make sense to create a database query language which expresses the DB operations in a non-imperative, but in a declarative, and hence in a functional way. That's how SQL makes sense, and that's also how the way LINQ is defined makes sense.
So, it makes sense to have a database language which is functional, but it's not because of the lists.

Related

In functional languages, how is the concept of immutability applied to addresses in memory?

I'm trying to understand how a lot of basic computer science concepts are implemented in functional languages. The point that I can't currently understand is how functional languages and philosophies deal with addresses in memory.
In the context of a very base computer science concept like sorts, how are issues of immutability dealt with efficiently? I know that structural sharing is really needed to keep memory from blowing up. But in my mind this means that relatively simple concepts like selection sort can become quite complicated.
Can someone explain how a functional language deals with in place sorts? Is the idea of being "in place" thrown out and replaced with a data structure that supports structural sharing?
I'm really trying to understand how immutability fits with addresses in memory (think pointers). For example, in an in place sort data is not destroyed, but it is moved to new addresses. Is this considered mutation? I think the answer is yes. But then how can you do things like rotations to balance a binary tree? How do functional programmers think about pointers?
I know that this is relatively hard question to answer, but I feel like its a big issue with respect to really understanding the functional paradigm. Any insights or resources would be greatly appreciated.
Just to get this out of the way:
For example, in an in place sort data is not destroyed, but it is moved to new addresses.
This does not make any sense. If the data is "moved to new addresses", the algorithm, by definition, no longer works "in place".
There is a long tradition of functional programming languages that do not insist on 100% purity. Starting with Lisp, over ML, then OCaml, Scala or Clojure - all these languages have mutable data structures. In "multi-paradigm" languages that have aspects of functional programming, like JavaScript and Python and even Java, you also have mutable data structures. Haskell is rather an exception in its insistence on purity.
Most functional programming languages prefer persistent data structures and algorithms that work on immutable data structures. That is, instead of a mutable hash map, those languages would usually prefer some kind of balanced sorted tree, and instead of mutable list buffers, they would prefer immutable singly-linked lists. For sorting those lists, you could take merge-sort, which is nicely expressible as a pure functional program (but is not in-place, at least not without some considerable extra effort).
Even if you insist on purity, you can still treat the mutable memory of your computer just like yet another part of the mutable "outside world" - as if it were some kind of user input-output, system clock, network communication, or a random number generator. That is, to deal with mutable memory in a pure functional way, you would need two components: first, you would need a way to describe what is to be done with the mutable memory by constructing a "plan" - which is immutable; and then, you would need an interpreter that can take this immutable plan, and apply it to an actual mutable chunk of memory. That is, the interpreter that mutates memory becomes somewhat external to the core of the language, and is treated just like any other part of the "external mutable world".
In languages which do not insist on purity, you can implement both the little domain-specific language for constructing the immutable plans, as well as the interpreter that actually mutates the memory, thereby separating the pure parts from the impure side-effecty mutable parts. For example, Chiusano & Bjarnason in their book "Functional Programming in Scala" have a chapter 14.2.5 literally called "A purely functional in-place quicksort".
In general, in statically typed functional programming, immutability is not the goal in itself. The goal is rather to ensure that half-backed mutable data structures do not escape the narrow scope of the algorithm for which the mutability is advantageous. If you find a way to ensure that, then it means that you can write purely functional programs that make use of mutable memory.
Your confusion comes from promiscuously mixing levels of abstraction.
How is memory allocation handled in your favorite OO garbage-collected language (Python, Java, Ruby, etc)? You don't know. That detail is left to the compiler and/or runtime. You are confusing the semantics of a programming language with an implementation detail for a compiler of that language. I will grant that C/C++ blur the distinction considerably, but that blurring is probably the most salient feature of those languages at this point.
Consider a common associative data structure, the C struct:
struct address
{
char number[10];
char street[100];
char city[50];
char state[15];
};
We know, in advance, what this will look like in memory. But consider a similar data structure in, say, Java:
public class Record {
public int number;
public String street;
public String city;
public String state;
}
How's that going to layout in memory? You don't know. Even if you replace the Strings with character buffers, you don't really know. Obviously javac makes it happen. It's no different with persistent data structures in functional languages: where stuff gets put in memory is up to the compiler, which is not bound by the semantics of the language it's compiling.

Is functional programming a type of declarative programming?

I am aware that declarative programming just passes the input and expects the output without stating the procedure how it is done. In functional programming, is a programming paradigm, which takes an input and returns an output. When I checked the Higher order functional programming, we pass a function to map/reduce, which does not reveal the procedure how it is done. So is higher order functional programming and declarative programming the same thing??
Short answer: No.
Wikipedia defines declarative programming as:
In computer science, declarative programming is a programming
paradigm - a style of building the structure and elements of computer
programs - that expresses the logic of a computation without describing
its control flow.
Or to state it a bit boldly: "Say what you want, not how you want it.".
This is thus in contrast with imperative programming languages where a program is seen as a set of instructions that are done one after another. The fact that map, etc. do not reveal the procedure does not make it declarative: one can use a lot of C libraries that are proprietary and do not allow you to inspect the source code. That however, does not mean that these are declarative.
The definition of functional programming on the other hand is:
In computer science, functional programming is a programming paradigm
- a style of building the structure and elements of computer programs - that treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data. It is a declarative
programming paradigm, which means programming is done with expressions
or declarations instead of statements.
Based on these definitions one could say that functional programming is a subset of declarative programming. In a practical sense however if we follow the strict definitions, no programming language nowadays is purely, and un-ambigously declarative or functional. One can however say that Haskell is more declarative than Java.
Declarative programming is usually considered to be "safer" since people tend to have trouble managing side-effects. A lot of programming errors are the result of not taking all side effects into account. On the other hand it is hard to
design a language that allows a programmer to describe what he wants without going into details on how to do it;
implement a compiler that will generate - based on such programs - an efficient implementation; and
some problems have inherent side effects. For instance if you work with a database, a network connection or a file system, then reading/writing to a file for instance is supposed to have side effects. One can of course decide not to make this part of the programming language (for instance many constraint programming languages do not allow these type of actions, and are a "sub language" in a larger system).
There have been several attempts to design such language. The most popular are - in my opinion - logic programming, functional programming, and constraint programming. Each has its merits and problems. We can also observe this declarative approach in for instance databases (like SQL) and text/XML processing (with XSLT, XPath, regular expressions,...) where one does not specify how a query is resolved, but simply specifies through for instance the regular expression what one is looking for.
Whether a programming language is however declarative, is a bit of a fuzzy discussion. Although programming languages, modeling languages and libraries like Haskell, Prolog, Gecode,... have definitely made programming more declarative, these are probably not declarative in the most strict sense. In the most strict sense, one should think that regardless how you write the logic, the compiler will always come up with the same result (although it might take a bit longer).
Say for instance we want to check whether a list is empty in Haskell. We can write this like:
is_empty1 :: [a] -> Bool
is_empty1 [] = True
is_empty1 (_:_) = False
We can however write it like this as well:
is_empty2 :: [a] -> Bool
is_empty2 l = length l == 0
Both should give the same result for the same queries. If we however give it an infinite list, is_empty1 (repeat 0) will return False whereas is_empty2 (repeat 0) will loop forever. So that means that we somehow still wrote some "control flow" into the program: we have defined - to some extent - how Haskell should evaluate this. Although lazy programming will result in the fact that a programmer does not really specify what should be evaluated first, there are still specifications how Haskell will evaluate this.
According to some people, this is the difference between programming and specifying. One of my professors once stated that according to him, the difference is that when you program something, you have somehow control about how something is evaluated, whereas when you specify something, you have no control. But again, this is only one of the many definitions.
Not entirely, functional programming emphasises more on what to compute rather than how to compute. However, there are patterns available in functional programming that are pretty much control flow patterns you would commonly associate with declarative programming, take for example the following control flow:
let continue = ref true in
while !continue do
...
if cond then continue := false
else
...
done
Looks familiar huh? Here you can see some declarative constructs but this time round we are in more control.

Is there a software-engineering methodology for functional programming? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
Software Engineering as it is taught today is entirely focused on object-oriented programming and the 'natural' object-oriented view of the world. There is a detailed methodology that describes how to transform a domain model into a class model with several steps and a lot of (UML) artifacts like use-case-diagrams or class-diagrams. Many programmers have internalized this approach and have a good idea about how to design an object-oriented application from scratch.
The new hype is functional programming, which is taught in many books and tutorials. But what about functional software engineering?
While reading about Lisp and Clojure, I came about two interesting statements:
Functional programs are often developed bottom up instead of top down ('On Lisp', Paul Graham)
Functional Programmers use Maps where OO-Programmers use objects/classes ('Clojure for Java Programmers', talk by Rich Hickley).
So what is the methodology for a systematic (model-based ?) design of a functional application, i.e. in Lisp or Clojure? What are the common steps, what artifacts do I use, how do I map them from the problem space to the solution space?
Thank God that the software-engineering people have not yet discovered functional programming. Here are some parallels:
Many OO "design patterns" are captured as higher-order functions. For example, the Visitor pattern is known in the functional world as a "fold" (or if you are a pointy-headed theorist, a "catamorphism"). In functional languages, data types are mostly trees or tuples, and every tree type has a natural catamorphism associated with it.
These higher-order functions often come with certain laws of programming, aka "free theorems".
Functional programmers use diagrams much less heavily than OO programmers. Much of what is expressed in OO diagrams is instead expressed in types, or in "signatures", which you should think of as "module types". Haskell also has "type classes", which is a bit like an interface type.
Those functional programmers who use types generally think that "once you get the types right; the code practically writes itself."
Not all functional languages use explicit types, but the How To Design Programs book, an excellent book for learning Scheme/Lisp/Clojure, relies heavily on "data descriptions", which are closely related to types.
So what is the methodology for a systematic (model-based ?) design of a functional application, i.e. in Lisp or Clojure?
Any design method based on data abstraction works well. I happen to think that this is easier when the language has explicit types, but it works even without. A good book about design methods for abstract data types, which is easily adapted to functional programming, is Abstraction and Specification in Program Development by Barbara Liskov and John Guttag, the first edition. Liskov won the Turing award in part for that work.
Another design methodology that is unique to Lisp is to decide what language extensions would be useful in the problem domain in which you are working, and then use hygienic macros to add these constructs to your language. A good place to read about this kind of design is Matthew Flatt's article Creating Languages in Racket. The article may be behind a paywall. You can also find more general material on this kind of design by searching for the term "domain-specific embedded language"; for particular advice and examples beyond what Matthew Flatt covers, I would probably start with Graham's On Lisp or perhaps ANSI Common Lisp.
What are the common steps, what artifacts do I use?
Common steps:
Identify the data in your program and the operations on it, and define an abstract data type representing this data.
Identify common actions or patterns of computation, and express them as higher-order functions or macros. Expect to take this step as part of refactoring.
If you're using a typed functional language, use the type checker early and often. If you're using Lisp or Clojure, the best practice is to write function contracts first including unit tests—it's test-driven development to the max. And you will want to use whatever version of QuickCheck has been ported to your platform, which in your case looks like it's called ClojureCheck. It's an extremely powerful library for constructing random tests of code that uses higher-order functions.
For Clojure, I recommend going back to good old relational modeling. Out of the Tarpit is an inspirational read.
Personally I find that all the usual good practices from OO development apply in functional programming as well - just with a few minor tweaks to take account of the functional worldview. From a methodology perspective, you don't really need to do anything fundamentally different.
My experience comes from having moved from Java to Clojure in recent years.
Some examples:
Understand your business domain / data model - equally important whether you are going to design an object model or create a functional data structure with nested maps. In some ways, FP can be easier because it encourages you to think about data model separately from functions / processes but you still have to do both.
Service orientation in design - actually works very well from a FP perspective, since a typical service is really just a function with some side effects. I think that the "bottom up" view of software development sometimes espoused in the Lisp world is actually just good service-oriented API design principles in another guise.
Test Driven Development - works well in FP languages, in fact sometimes even better because pure functions lend themselves extremely well to writing clear, repeatable tests without any need for setting up a stateful environment. You might also want to build separate tests to check data integrity (e.g. does this map have all the keys in it that I expect, to balance the fact that in an OO language the class definition would enforce this for you at compile time).
Prototying / iteration - works just as well with FP. You might even be able to prototype live with users if you get very extremely good at building tools / DSL and using them at the REPL.
OO programming tightly couples data with behavior. Functional programming separates the two. So you don't have class diagrams, but you do have data structures, and you particularly have algebraic data types. Those types can be written to very tightly match your domain, including eliminating impossible values by construction.
So there aren't books and books on it, but there is a well established approach to, as the saying goes, make impossible values unrepresentable.
In so doing, you can make a range of choices about representing certain types of data as functions instead, and conversely, representing certain functions as a union of data types instead so that you can get, e.g., serialization, tighter specification, optimization, etc.
Then, given that, you write functions over your adts such that you establish some sort of algebra -- i.e. there are fixed laws which hold for these functions. Some are maybe idempotent -- the same after multiple applications. Some are associative. Some are transitive, etc.
Now you have a domain over which you have functions which compose according to well behaved laws. A simple embedded DSL!
Oh, and given properties, you can of course write automated randomized tests of them (ala QuickCheck).. and that's just the beginning.
Object Oriented design isn't the same thing as software engineering. Software engineering has to do with the entire process of how we go from requirements to a working system, on time and with a low defect rate. Functional programming may be different from OO, but it does not do away with requirements, high level and detailed designs, verification and testing, software metrics, estimation, and all that other "software engineering stuff".
Furthermore, functional programs do exhibit modularity and other structure. Your detailed designs have to be expressed in terms of the concepts in that structure.
One approach is to create an internal DSL within the functional programming language of choice. The "model" then is a set of business rules expressed in the DSL.
See my answer to another post:
How does Clojure aproach Separation of Concerns?
I agree more needs to be written on the subject on how to structure large applications that use an FP approach (Plus more needs to be done to document FP-driven UIs)
While this might be considered naive and simplistic, I think "design recipes" (a systematic approach to problem solving applied to programming as advocated by Felleisen et al. in their book HtDP) would be close to what you seem to be looking for.
Here, a few links:
http://www.northeastern.edu/magazine/0301/programming.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.8371
I've recently found this book:
Functional and Reactive Domain Modeling
I think is perfectly in line with your question.
From the book description:
Functional and Reactive Domain Modeling teaches you how to think of the domain model in terms of pure functions and how to compose them to build larger abstractions. You will start with the basics of functional programming and gradually progress to the advanced concepts and patterns that you need to know to implement complex domain models. The book demonstrates how advanced FP patterns like algebraic data types, typeclass based design, and isolation of side-effects can make your model compose for readability and verifiability.
There is the "program calculation" / "design by calculation" style associated with Prof. Richard Bird and the Algebra of Programming group at Oxford University (UK), I don't think its too far-fetched to consider this a methodology.
Personally while I like the work produced by the AoP group, I don't have the discipline to practice design in this way myself. However that's my shortcoming, and not one of program calculation.
I've found Behavior Driven Development to be a natural fit for rapidly developing code in both Clojure and SBCL. The real upside of leveraging BDD with a functional language is that I tend to write much finer grain unit tests than I usually do when using procedural languages because I do a much better job of decomposing the problem into smaller chunks of functionality.
Honestly if you want design recipes for functional programs, take a look at the standard function libraries such as Haskell's Prelude. In FP, patterns are usually captured by higher order procedures (functions that operate on functions) themselves. So if a pattern is seen, often a higher order function is simply created to capture that pattern.
A good example is fmap. This function takes a function as an argument and applies it to all the "elements" of the second argument. Since it is part of the Functor type class, any instance of a Functor (such as a list, graph, etc...) may be passed as a second argument to this function. It captures the general behavior of applying a function to every element of its second argument.
Well,
Generally many Functional Programming Languages are used at universities for a long time for "small toy problems".
They are getting more popular now since OOP has difficulties with "paralel programming" because of "state".And sometime functional style is better for problem at hand like Google MapReduce.
I am sure that, when functioanl guys hit the wall [ try to implement systems bigger than 1.000.000 lines of code], some of them will come with new software-engineering methodologies with buzz words :-). They should answer the old question: How to divide system into pieces so that we can "bite" each pieces one at a time? [ work iterative, inceremental en evolutionary way] using Functional Style.
It is sure that Functional Style will effect our Object Oriented
Style.We "still" many concepts from Functional Systems and adapted to
our OOP languages.
But will functional programs will be used for such a big systems?Will they become main stream? That is the question.
And Nobody can come with realistic methodology without implementing such a big systems, making his-her hands dirty.
First you should make your hands dirty then suggest solution. Solutions-Suggestions without "real pains and dirt" will be "fantasy".

Is Erlang really a functional language? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I hear all the time that Erlang is a functional language, yet it is easy to call databases or non side-effect free code from a function, and commands are easily ordered by using "," commas between them just like Ruby or another language, so where is the "functional" part of Erlang?
The central idea is that each process is a functional program over an input stream of messages. The result from the functional program is an output stream of messages to others. From this perspective, Erlang is a rather clean functional language; there are no destructive updates to data structures (like setcar in Lisp and most Schemes).
With few exceptions, all built-in functions such as operations on ETS tables also follow this model: apart from efficiency issues, those BIFs could actually have been implemented with pure Erlang processes and message passing.
So yes, the Erlang language is functional, but a collection of interacting Erlang processes is a different thing. Each process is an ongoing computation, and as such it has a current state, which can change in relation to the other processes. Even a database is just another process in this respect.
In my mind, this is one of the most important things about Erlang: outside the process, there could be a storm raging, but inside, things are calm, letting you focus on what that process should do - and only that.
There's a meme that functional languages must have immutable values and be side-effect free, but I say that any language with first-class functions is a functional programming language.
It is useful and powerful to have strong controls over value mutability and side effects, but I believe these are peripheral to functional programming. Nice to have, but not essential. Even in languages that do have these properties, there is always a way to escape the purity of the paradigm.1
There is a grayscale continuum between truly pure FP languages that you can't actually use for anything practical and languages that are really quite impure but still have some of the FP nature to them:
Book FP: Introductory books on FP languages frequently show only a subset of the language, with all examples done within the language's REPL, so that you never get to see the purely functional paradigm get broken. A good example of this is Scheme as presented in The Little Schemer.
You can come away from reading such a book with the false impression that FP languages can't actually do anything useful.
Haskell: The creators of Haskell went to uncommon lengths to wall off impurity via the famous I/O monad. Everything on one side of the wall is purely functional, so that the compiler can reason confidently about the code.
But the important thing is, despite the existence of this wall, you have to use the I/O monad to get anything useful done in Haskell.2 In that sense, Haskell isn't as "pure" as some would like you to believe. The I/O monad allows you to build any sort of "impure" software you like in Haskell: database clients, highly stateful GUIs, etc.
Erlang: Has immutable values and first-class functions, but lacks a strong wall between the core language and the impure bits.
Erlang ships with Mnesia, a disk-backed in-memory DBMS, which is about as impure as software gets. It's scarcely different in practice from a global variable store. Erlang also has great support for communicating with external programs via ports, sockets, etc.
Erlang doesn't impose any kind of purity policy on you, the programmer, at the language level. It just gives you the tools and lets you decide how to use them.
OCaml and F#: These closely-related multiparadigm languages include both purely functional elements as well as imperative and object-oriented characteristics.
The imperative programming bits allow you to do things like write a traditional for loop with a mutable counter variable, whereas a pure FP program would probably try to recurse over a list instead to accomplish the same result.
The OO parts are pretty much useless without the mutable keyword, which turns a value definition into a variable, so that the compiler won't complain if you change the variable's value. Mutable variables in OCaml and F# have some limitations, but you can escape even those limitations with the ref keyword.
If you're using F# with .NET, you're going to be mutating values all the time, because most of .NET is mutable, in one way or another. Any .NET object with a settable property is mutable, for example, and all the GUI stuff inherently has side-effects. The only immutable part of .NET that immediately comes to mind is System.String.
Despite all this, no one would argue that OCaml and F# are not functional programming languages.
JavaScript, R, Lua, Perl...: There are many languages even less pure than OCaml which can still be considered functional in some sense. Such languages have first-class functions, but values are mutable by default.
Foototes:
Any truly pure FP language is a toy language or someone's research project.
That is, unless your idea of "useful" is to keep everything in the ghci REPL. You can use Haskell like a glorified calculator, if you like, so it's pure FP.
Yes, it's a functional language. It's not a pure functional language like Haskell, but then again, neither is LISP (and nobody really argues that LISP isn't functional).
The message-passing/process handling of Erlang is an implementation of the Actor model. You could argue that Erlang is an Actor language, with a functional language used for the individual Actors.
The functional part is that you tend to pass around functions. Most langauges can be used both as a functional language, and as an imperative language, even C (it's quite possible to make a program consisting of only function pointers and constants).
I guess the distinguishing factor is usually the lack of mutable variables in functional languages.

Advantages of stateless programming?

I've recently been learning about functional programming (specifically Haskell, but I've gone through tutorials on Lisp and Erlang as well). While I found the concepts very enlightening, I still don't see the practical side of the "no side effects" concept. What are the practical advantages of it? I'm trying to think in the functional mindset, but there are some situations that just seem overly complex without the ability to save state in an easy way (I don't consider Haskell's monads 'easy').
Is it worth continuing to learn Haskell (or another purely functional language) in-depth? Is functional or stateless programming actually more productive than procedural? Is it likely that I will continue to use Haskell or another functional language later, or should I learn it only for the understanding?
I care less about performance than productivity. So I'm mainly asking if I will be more productive in a functional language than a procedural/object-oriented/whatever.
Read Functional Programming in a Nutshell.
There are lots of advantages to stateless programming, not least of which is dramatically multithreaded and concurrent code. To put it bluntly, mutable state is enemy of multithreaded code. If values are immutable by default, programmers don't need to worry about one thread mutating the value of shared state between two threads, so it eliminates a whole class of multithreading bugs related to race conditions. Since there are no race conditions, there's no reason to use locks either, so immutability eliminates another whole class of bugs related to deadlocks as well.
That's the big reason why functional programming matters, and probably the best one for jumping on the functional programming train. There are also lots of other benefits, including simplified debugging (i.e. functions are pure and do not mutate state in other parts of an application), more terse and expressive code, less boilerplate code compared to languages which are heavily dependent on design patterns, and the compiler can more aggressively optimize your code.
The more pieces of your program are stateless, the more ways there are to put pieces together without having anything break. The power of the stateless paradigm lies not in statelessness (or purity) per se, but the ability it gives you to write powerful, reusable functions and combine them.
You can find a good tutorial with lots of examples in John Hughes's paper Why Functional Programming Matters (PDF).
You will be gobs more productive, especially if you pick a functional language that also has algebraic data types and pattern matching (Caml, SML, Haskell).
Many of the other answers have focused on the performance (parallelism) side of functional programming, which I believe is very important. However, you did specifically ask about productivity, as in, can you program the same thing faster in a functional paradigm than in an imperative paradigm.
I actually find (from personal experience) that programming in F# matches the way I think better, and so it's easier. I think that's the biggest difference. I've programmed in both F# and C#, and there's a lot less "fighting the language" in F#, which I love. You don't have to think about the details in F#. Here's a few examples of what I've found I really enjoy.
For example, even though F# is statically typed (all types are resolved at compile time), the type inference figures out what types you have, so you don't have to say it. And if it can't figure it out, it automatically makes your function/class/whatever generic. So you never have to write any generic whatever, it's all automatic. I find that means I'm spending more time thinking about the problem and less how to implement it. In fact, whenever I come back to C#, I find I really miss this type inference, you never realise how distracting it is until you don't need to do it anymore.
Also in F#, instead of writing loops, you call functions. It's a subtle change, but significant, because you don't have to think about the loop construct anymore. For example, here's a piece of code which would go through and match something (I can't remember what, it's from a project Euler puzzle):
let matchingFactors =
factors
|> Seq.filter (fun x -> largestPalindrome % x = 0)
|> Seq.map (fun x -> (x, largestPalindrome / x))
I realise that doing a filter then a map (that's a conversion of each element) in C# would be quite simple, but you have to think at a lower level. Particularly, you'd have to write the loop itself, and have your own explicit if statement, and those kinds of things. Since learning F#, I've realised I've found it easier to code in the functional way, where if you want to filter, you write "filter", and if you want to map, you write "map", instead of implementing each of the details.
I also love the |> operator, which I think separates F# from ocaml, and possibly other functional languages. It's the pipe operator, it lets you "pipe" the output of one expression into the input of another expression. It makes the code follow how I think more. Like in the code snippet above, that's saying, "take the factors sequence, filter it, then map it." It's a very high level of thinking, which you don't get in an imperative programming language because you're so busy writing the loop and if statements. It's the one thing I miss the most whenever I go into another language.
So just in general, even though I can program in both C# and F#, I find it easier to use F# because you can think at a higher level. I would argue that because the smaller details are removed from functional programming (in F# at least), that I am more productive.
Edit: I saw in one of the comments that you asked for an example of "state" in a functional programming language. F# can be written imperatively, so here's a direct example of how you can have mutable state in F#:
let mutable x = 5
for i in 1..10 do
x <- x + i
Consider all the difficult bugs you've spent a long time debugging.
Now, how many of those bugs were due to "unintended interactions" between two separate components of a program? (Nearly all threading bugs have this form: races involving writing shared data, deadlocks, ... Additionally, it is common to find libraries that have some unexpected effect on global state, or read/write the registry/environment, etc.) I would posit that at least 1 in 3 'hard bugs' fall into this category.
Now if you switch to stateless/immutable/pure programming, all those bugs go away. You are presented with some new challenges instead (e.g. when you do want different modules to interact with the environment), but in a language like Haskell, those interactions get explicitly reified into the type system, which means you can just look at the type of a function and reason about the type of interactions it can have with the rest of the program.
That's the big win from 'immutability' IMO. In an ideal world, we'd all design terrific APIs and even when things were mutable, effects would be local and well-documented and 'unexpected' interactions would be kept to a minimum. In the real world, there are lots of APIs that interact with global state in myriad ways, and these are the source of the most pernicious bugs. Aspiring to statelessness is aspiring to be rid of unintended/implicit/behind-the-scenes interactions among components.
One advantage of stateless functions is that they permit precalculation or caching of the function's return values. Even some C compilers allow you to explicitly mark functions as stateless to improve their optimisability. As many others have noted, stateless functions are much easier to parallelise.
But efficiency is not the only concern. A pure function is easier to test and debug since anything that affects it is explicitly stated. And when programming in a functional language, one gets in the habit of making as few functions "dirty" (with I/O, etc.) as possible. Separating out the stateful stuff this way is a good way to design programs, even in not-so-functional languages.
Functional languages can take a while to "get", and it's difficult to explain to someone who hasn't gone through that process. But most people who persist long enough finally realise that the fuss is worth it, even if they don't end up using functional languages much.
Without state, it is very easy to automatically parallelize your code (as CPUs are made with more and more cores this is very important).
Stateless web applications are essential when you start having higher traffic.
There could be plenty of user data that you don't want to store on the client side for security reasons for example. In this case you need to store it server-side. You could use the web applications default session but if you have more than one instance of the application you will need to make sure that each user is always directed to the same instance.
Load balancers often have the ability to have 'sticky sessions' where the load balancer some how knows which server to send the users request to. This is not ideal though, for example it means every time you restart your web application, all connected users will lose their session.
A better approach is to store the session behind the web servers in some sort of data store, these days there are loads of great nosql products available for this (redis, mongo, elasticsearch, memcached). This way the web servers are stateless but you still have state server-side and the availability of this state can be managed by choosing the right datastore setup. These data stores usually have great redundancy so it should almost always be possible to make changes to your web application and even the data store without impacting the users.
My understanding is that FP also has a huge impact on testing. Not having a mutable state will often force you to supply more data to a function than you would have to for a class. There's tradeoffs, but think about how easy it would be to test a function that is "incrementNumberByN" rather than a "Counter" class.
Object
describe("counter", () => {
it("should increment the count by one when 'increment' invoked without
argument", () => {
const counter = new Counter(0)
counter.increment()
expect(counter.count).toBe(1)
})
it("should increment the count by n when 'increment' invoked with
argument", () => {
const counter = new Counter(0)
counter.increment(2)
expect(counter.count).toBe(2)
})
})
functional
describe("incrementNumberBy(startingNumber, increment)", () => {
it("should increment by 1 if n not supplied"){
expect(incrementNumberBy(0)).toBe(1)
}
it("should increment by 1 if n = 1 supplied"){
expect(countBy(0, 1)).toBe(1)
}
})
Since the function has no state and the data going in is more explicit, there are fewer things to focus on when you are trying to figure out why a test might be failing. On the tests for the counter we had to do
const counter = new Counter(0)
counter.increment()
expect(counter.count).toBe(1)
Both of the first two lines contribute to the value of counter.count. In a simple example like this 1 vs 2 lines of potentially problematic code isn't a big deal, but when you deal with a more complex object you might be adding a ton of complexity to your testing as well.
In contrast, when you write a project in a functional language, it nudges you towards keeping fancy algorithms dependent on the data flowing in and out of a particular function, rather than being dependent on the state of your system.
Another way of looking at it would be illustrating the mindset for testing a system in each paradigm.
For Functional Programming: Make sure function A works for given inputs, you make sure function B works with given inputs, make sure C works with given inputs.
For OOP: Make sure Object A's method works given an input argument of X after doing Y and Z to the state of the object. Make sure Object B's method works given an input argument of X after doing W and Y to the state of the object.
The advantages of stateless programming coincide with those goto-free programming, only more so.
Though many descriptions of functional programming emphasize the lack of mutation, the lack of mutation also goes hand in hand with the lack of unconditional control transfers, such as loops. In functional programming languages, recursion, in particularly tail recursion, replaces looping. Recursion eliminates both the unconditional control construct and the mutation of variables in the same stroke. The recursive call binds argument values to parameters, rather than assigning values.
To understand why this is advantageous, rather than turning to functional programming literature, we can consult the 1968 paper by Dijkstra, "Go To Statement Considered Harmful":
"The unbridled use of the go to statement has an immediate consequence that it becomes terribly hard to find a meaningful set of coordinates in which to describe the process progress."
Dijkstra's observations, however still apply to structured programs which avoid go to, because statements like while, if and whatnot are just window dressing on go to! Without using go to, we can still find it impossible to find the coordinates in which to describe the process progress. Dijkstra neglected to observe that bridled go to still has all the same issues.
What this means is that at any given point in the execution of the program, it is not clear how we got there. When we run into a bug, we have to use backwards reasoning: how did we end up in this state? How did we branch into this point of the code? Often it is hard to follow: the trail goes back a few steps and then runs cold due to a vastness of possibilities.
Functional programming gives us the absolute coordinates. We can rely on analytical tools like mathematical induction to understand how the program arrived into a certain situation.
For example, to convince ourselves that a recursive function is correct, we can just verify its base cases, and then understand and check its inductive hypothesis.
If the logic is written as a loop with mutating variables, we need a more complicated set of tools: breaking down the logic into steps with pre- and post-conditions, which we rewrite in terms mathematics that refers to the prior and current values of variables and such. Yes, if the program uses only certain control structures, avoiding go to, then the analysis is somewhat easier. The tools are tailored to the structures: we have a recipe for how we analyze the correctness of an if, while, and other structures.
However, by contrast, in a functional program there is no prior value of any variable to reason about; that whole class of problem has gone away.
Haskel and Prolog are good examples of languages which may be implemented as stateless programming languages. But unfortunately they are not so far. Both Prolog and Haskel have imperative implementations currently. See some SMT's, seem closer to stateless coding.
This is why you are having hard time seeing any benefits from these programing languages. Due to imperative implementations we have no performance and stability benefits. So the lack of stateless languages infrastructure is the main reason you feel no any stateless programming language due to its absence.
These are some benefits of pure stateless:
Task description is the program (compact code)
Stability due to absense of state-dependant bugs (the most of bugs)
Cachable results (a set of inputs always cause same set of outputs)
Distributable computations
Rebaseable to quantum computations
Thin code for multiple overlapping clauses
Allows differentiable programming optimizations
Consistently applying code changes (adding logic breaks nothing written)
Optimized combinatorics (no need to bruteforce enumerations)
Stateless coding is about concentrating on relations between data which then used for computing by deducing it. Basically this is the next level of programming abstraction. It is much closer to native language then any imperative programming languages because it allow describing relations instead of state change sequences.

Resources