Is finding the equivalence of two functions undecidable? - math

Is it impossible to know if two functions are equivalent? For example, a compiler writer wants to determine if two functions that the developer has written perform the same operation, what methods can he use to figure that one out? Or can what can we do to find out that two TMs are identical? Is there a way to normalize the machines?
Edit: If the general case is undecidable, how much information do you need to have before you can correctly say that two functions are equivalent?

Given an arbitrary function, f, we define a function f' which returns 1 on input n if f halts on input n. Now, for some number x we define a function g which, on input n, returns 1 if n = x, and otherwise calls f'(n).
If functional equivalence were decidable, then deciding whether g is identical to f' decides whether f halts on input x. That would solve the Halting problem. Related to this discussion is Rice's theorem.
Conclusion: functional equivalence is undecidable.
There is some discussion going on below about the validity of this proof. So let me elaborate on what the proof does, and give some example code in Python.
The proof creates a function f' which on input n starts to compute f(n). When this computation finishes, f' returns 1. Thus, f'(n) = 1 iff f halts on input n, and f' doesn't halt on n iff f doesn't. Python:
def create_f_prime(f):
def f_prime(n):
f(n)
return 1
return f_prime
Then we create a function g which takes n as input, and compares it to some value x. If n = x, then g(n) = g(x) = 1, else g(n) = f'(n). Python:
def create_g(f_prime, x):
def g(n):
return 1 if n == x else f_prime(n)
return g
Now the trick is, that for all n != x we have that g(n) = f'(n). Furthermore, we know that g(x) = 1. So, if g = f', then f'(x) = 1 and hence f(x) halts. Likewise, if g != f' then necessarily f'(x) != 1, which means that f(x) does not halt. So, deciding whether g = f' is equivalent to deciding whether f halts on input x. Using a slightly different notation for the above two functions, we can summarise all this as follows:
def halts(f, x):
def f_prime(n): f(n); return 1
def g(n): return 1 if n == x else f_prime(n)
return equiv(f_prime, g) # If only equiv would actually exist...
I'll also toss in an illustration of the proof in Haskell (GHC performs some loop detection, and I'm not really sure whether the use of seq is fool proof in this case, but anyway):
-- Tells whether two functions f and g are equivalent.
equiv :: (Integer -> Integer) -> (Integer -> Integer) -> Bool
equiv f g = undefined -- If only this could be implemented :)
-- Tells whether f halts on input x
halts :: (Integer -> Integer) -> Integer -> Bool
halts f x = equiv f' g
where
f' n = f n `seq` 1
g n = if n == x then 1 else f' n

Yes, it is undecidable. This is a form of the halting problem.
Note that I mean that it's undecidable for the general case. Just as you can determine halting for sufficiently simple programs, you can determine equivalency for sufficiently simple functions, and it's not inconceivable that this could be of some use for an application. But you cannot make a general method for determining equivalency of any two possible functions.

The general case is undecidable by Rice's Theorem, as others have already said (Rice's Theorem essentially says that any nontrivial property of a Turing-complete formalism is undecidable).
There are special cases where equivalence is decidable, the best-known example is probably equivalence of finite state automata. If I remember correctly equivalence of pushdown automata is already undecidable by reduction to Post's Correspondence Problem.
To prove that two given functions are equivalent you would require as input a proof of the equivalence in some formalism, which you can then check for correctness. The essential parts of this proof are the loop invariants, as these cannot be derived automatically.

In the general case it's undecidable whether two turing machines have always the same output for the identical input. Since you can't even decide whether a tm will halt on the input, I don't see how it should be possible to decide whether both halt AND output the same result...

It depends on what you mean by "function."
If the functions you are talking about are guaranteed to terminate -- for example, because they are written in a language in which all functions terminate -- and operate over finite domains, it's "easy" (although it might still take a very, very long time): two functions are equivalent if and only if they have the same value at every point in their shared domain.
This is called "extensional" equivalence to distinguish it from syntactic or "intensional" equivalence. Two functions are extensionally equivalent if they are intensionally equivalent, but the converse does not hold.
(All the other people above noting that it is undecidable in the general case are quite correct, of course, this is a fairly uncommon -- and usually uninteresting in practice -- special case.)

Note that the halting problem is decidable for linear bounded automata. Real computers are always bounded, and programs for them will always loop back to a previous configuration after sufficiently many steps. If you are using an unbounded (imaginary) computer to keep track of the configurations, you can detect that looping and take it into account.

You could check in your compiler to see if they are "exactly" identical, sure, but determining if they return identical values would be difficult and time consuming. You would have to basically call that method and perform its routine over an infinite number of possible calls and compare the value with that from the other routine.
Even if you could do the above, you would have to account for what global values change within the function, what objects are destroyed / changed in the function that do not affect the outcome.
You can really only compare the compiled code. So compile the compiled code to refactor?
Imagine the run time on trying to compile the code with "that" compiler. You could spend a LOT of time on here answering questions saying: "busy compiling..." :)

I think if you allow side effects, you can show that the problem can be morphed into the Post correspondence problem so you can't, in general, show if two functions are even capable of having the same side effects.

Is it impossible to know if two functions are equivalent?
No. It is possible to know that two functions are equivalent. If you have f(x), you know f(x) is equivalent to f(x).
If the question is "it is possible to determine if f(x) and g(x) are equivalent with f and g being any function and for all functions g and f", then the answer is no.
However, if the question is "can a compiler determine that if f(x) and g(x) are equivalent that they are equivalent?", then the answer is yes if they are equivalent in both output and side effects and order of side effects. In other words, if one is a transformation of the other that preserves behavior, then a compiler of sufficient complexity should be able to detect it. It also means that the compiler can transform a function f into a more optimal and equivalent function g given a particular definition of equivalent. It gets even more fun if f includes undefined behavior, because then g can also include undefined (but different) behavior!

Related

Power with integer exponents in Isabelle

Here is my definition of power for integer exponents following this mailing-list post:
definition
"ipow x n = (if n < 0 then (1 / x) ^ n else x ^ n)"
notation ipow (infixr "^⇩i" 80)
Is there a better way to define it?
Is there an existing theory in Isabelle that already includes it so that I can reuse its results?
Context
I am dealing with complex exponentials, for instance consider this theorem:
after I proved it I realized I need to work with integers n not just naturals and this involves using powers to take out the n from the exponential.
I don't think something like this exists in the library. However, you have a typo in your definition. I believe you want something like
definition
"ipow x n = (if n < 0 then (1 / x) ^ nat (-n) else x ^ nat n)"
Apart from that, it is fine. You could write inverse x ^ nat (-n), but it should make little difference in practice. I would suggest the name int_power since the corresponding operation with natural exponents is called power.
Personally, I would avoid introducting a new constant like this because in order to actually use it productively, you also need an extensive collection of theorems around it. This means quite a bit of (tedious) work. Do you really need to talk about integers here? I find that one can often get around it in practice (in particular, note that the exponentials in question are periodic anyway).
It may be useful to introduce such a power operator nevertheless; all I'm saying is you should be aware of the trade-off.
Side note: An often overlooked function in Isabelle that is useful when talking about exponentials like this is cis (as in ‘cosine + i · sine‘). cis x is equivalent to ‘exp(ix)’ where x is real.

Math-operations (or hash functions) without order dependency

The problem I am thinking about is hash functions, although I'm mainly interested in the mathematical terms/background to describe my requested property.
Consider the case where I have a hash-function taking a secret (S) and a number (X) which creates another number (Y):
Hash : S, X → Y
I then define two different hash-functions with their own secrets (a and b):
H1(X) := Hash(a, X)
H2(X) := Hash(b, X)
The property I want is that:
H1(H2(x)) = H2(H1(X))
(I think this is called that the functions commute?)
Taking a step back from programming and thinking about math we can look at different operations. If the function consist of one operation only, then I'm quite sure that this property will always be satisfied if the operation has both associative and commutative properties. However there are operations which are order insensitive but non-commutative, e.g. division. How does I know if my choice of hash function will make it commute?
Some examples that seems to work:
Simple addition:
Hash(S, X) := S + X
Bitwise xor:
Hash(S, X) := S xor X
Modular exponentiation:
Hash(S, X) := X^S mod p
if S ∈ N and X ∈ Z
How do I know if my choice of hash function will make it commute?
Commutativity under composition is an unusual property. It's not typical unless the functions are using a commutative operation of some underlying algebraic structures, such as "multiply by x". This is the form of your three examples.
The practical answer is "if you don't have a proof that it's commutative, assume it's not commutative". There's no general algorithm that will provide that proof for you.

Isabelle/HOL foundations

I have seen a lot of documentation about Isabelle's syntax and proof strategies. However, little have I found about its foundations. I have a few questions that I would be very grateful if someone could take the time to answer:
Why doesn't Isabelle/HOL admit functions that do not terminate? Many other languages such as Haskell do admit non-terminating functions.
What symbols are part of Isabelle's meta-language? I read that there are symbols in the meta-language for Universal Quantification (/\) and for implication (==>). However, these symbols have their counterpart in the object-level language (∀ and -->). I understand that --> is an object-level function of type bool => bool => bool. However, how are ∀ and ∃ defined? Are they object-level Boolean functions? If so, they are not computable (considering infinite domains). I noticed that I am able to write Boolean functions in therms of ∀ and ∃, but they are not computable. So what are ∀ and ∃? Are they part of the object-level? If so, how are they defined?
Are Isabelle theorems just Boolean expressions? Then Booleans are part of the meta-language?
As far as I know, Isabelle is a strict programming language. How can I use infinite objects? Let's say, infinite lists. Is it possible in Isabelle/HOL?
Sorry if these questions are very basic. I do not seem to find a good tutorial on Isabelle's meta-theory. I would love if someone could recommend me a good tutorial on these topics.
Thank you very much.
You can define non-terminating (i.e. partial) functions in Isabelle (cf. Function package manual (section 8)). However, partial functions are more difficult to reason about, because whenever you want to use its definition equations (the psimps rules, which replace the simps rules of a normal function), you have to show that the function terminates on that particular input first.
In general, things like non-definedness and non-termination are always problematic in a logic – consider, for instance, the function ‘definition’ f x = f x + 1. If we were to take this as an equation on ℤ (integers), we could subtract f x from both sides and get 0 = 1. In Haskell, this problem is ‘solved’ by saying that this is not an equation on ℤ, but rather on ℤ ∪ {⊥} (the integers plus bottom) and the non-terminating function f evaluates to ⊥, and ‘⊥ + 1 = ⊥’, so everything works out fine.
However, if every single expression in your logic could potentially evaluate to ⊥ instead of a ‘proper‘ value, reasoning in this logic will become very tedious. This is why Isabelle/HOL chooses to restrict itself to total functions; things like partiality have to be emulated with things like undefined (which is an arbitrary value that you know nothing about) or option types.
I'm not an expert on Isabelle/Pure (the meta logic), but the most important symbols are definitely
⋀ (the universal meta quantifier)
⟹ (meta implication)
≡ (meta equality)
&&& (meta conjunction, defined in terms of ⟹)
Pure.term, Pure.prop, Pure.type, Pure.dummy_pattern, Pure.sort_constraint, which fulfil certain internal functions that I don't know much about.
You can find some information on this in the Isabelle/Isar Reference Manual in section 2.1, and probably more elsewhere in the manual.
Everything else (that includes ∀ and ∃, which indeed operate on boolean expressions) is defined in the object logic (HOL, usually). You can find the definitions, of rather the axiomatisations, in ~~/src/HOL/HOL.thy (where ~~ denotes the Isabelle root directory):
All_def: "All P ≡ (P = (λx. True))"
Ex_def: "Ex P ≡ ∀Q. (∀x. P x ⟶ Q) ⟶ Q"
Also note that many, if not most Isabelle functions are typically not computable. Isabelle is not a programming language, although it does have a code generator that allows exporting Isabelle functions as code to programming languages as long as you can give code equations for all the functions involved.
3)
Isabelle theorems are a complex datatype (cf. ~~/src/Pure/thm.ML) containing a lot of information, but the most important part, of course, is the proposition. A proposition is something from Isabelle/Pure, which in fact only has propositions and functions. (and itself and dummy, but you can ignore those).
Propositions are not booleans – in fact, there isn't even a way to state that a proposition does not hold in Isabelle/Pure.
HOL then defines (or rather axiomatises) booleans and also axiomatises a coercion from booleans to propositions: Trueprop :: bool ⇒ prop
Isabelle is not a programming language, and apart from that, totality does not mean you have to restrict yourself to finite structures. Even in a total programming language, you can have infinite lists. (cf. Idris's codata)
Isabelle is a theorem prover, and logically, infinite objects can be treated by axiomatising them and then reasoning about them using the axioms and rules that you have.
For instance, HOL assumes the existence of an infinite type and defines the natural numbers on that. That already gives you access to functions nat ⇒ 'a, which are essentially infinite lists.
You can also define infinite lists and other infinite data structures as codatatypes with the (co-)datatype package, which is based on bounded natural functors.
Let me add some points to two of your questions.
1) Why doesn't Isabelle/HOL admit functions that do not terminate? Many other languages such as Haskell do admit non-terminating functions.
In short: Isabelle/HOL does not require termination, but totality (i.e., there is a specific result for each input to the function) of functions. Totality does not mean that a function is actually terminating when transcribed to a (functional) programming language or even that it is computable at all.
Therefore, talking about termination is somewhat misleading, even though it is encouraged by the fact that Isabelle/HOL's function package uses the keyword termination for proving some property P about which I will have to say a little more below.
On the one hand the term "termination" might sound more intuitive to a wider audience. On the other hand, a more precise description of P would be well-foundedness of the function's call graph.
Don't get me wrong, termination is not really a bad name for the property P, it is even justified by the fact that many techniques that are implemented in the function package are very close to termination techniques from term rewriting or functional programming (like the size-change principle, dependency pairs, lexicographic orders, etc.).
I'm just saying that it can be misleading. The answer to why that is the case also touches on question 4 of the OP.
4) As far as I know Isabelle is a strict programming language. How can I use infinite objects? Let's say, infinite lists. Is it possible in Isabelle/HOL?
Isabelle/HOL is not a programming language and it specifically does not have any evaluation strategy (we could alternatively say: it has any evaluation strategy you like).
And here is why the word termination is misleading (drum roll): if there is no evaluation strategy and we have termination of a function f, people might expect f to terminate independent of the used strategy. But this is not the case. A termination proof of a function rather ensures that f is well-defined. Even if f is computable a proof of P merely ensures that there is an evaluation strategy for which f terminates.
(As an aside: what I call "strategy" here, is typically influenced by so called cong-rules (i.e., congruence rules) in Isabelle/HOL.)
As an example, it is trivial to prove that the function (see Section 10.1 Congruence rules and evaluation order in the documentation of the function package):
fun f' :: "nat ⇒ bool"
where
"f' n ⟷ f' (n - 1) ∨ n = 0"
terminates (in the sense defined by termination) after adding the cong-rule:
lemma [fundef_cong]:
"Q = Q' ⟹ (¬ Q' ⟹ P = P') ⟹ (P ∨ Q) = (P' ∨ Q')"
by auto
Which essentially states that logical-or should be "evaluated" from right to left. However, if you write the same function e.g. in OCaml it causes a stack overflow ...
EDIT: this answer is not really correct, check out Lars' comment below.
Unfortunately I don't have enough reputation to post this as a comment, so here is my go at an answer (please bear in mind I am no expert in Isabelle, but I also had similar questions once):
1) The idea is to prove statements about the defined functions. I am not sure how familiar you are with Computability Theory, but think about the Halting Problem and the fact most undeciability problems stem from it (such as Acceptance Problem). Imagine defining a function which you can't prove it terminates. How could you then still prove it returns the number 42 when given input "ABC" and it doesn't go in an infinite loop?
If instead you limit yourself to terminating functions, you can prove much more about them, essentially making a trade-off (or at least this is how I see it).
These ideas stem from Constructivism and Intuitionism and I recommend you check out Robert Harper's very interesting lecture series: https://www.youtube.com/watch?v=9SnefrwBIDc&list=PLGCr8P_YncjXRzdGq2SjKv5F2J8HUFeqN on Type Theory
You should check out especially the part about the absence of the Law of Excluded middle: http://youtu.be/3JHTb6b1to8?t=15m34s
2) See Manuel's answer.
3,4) Again see Manuel's answer keeping in mind Intuitionistic logic: "the fundamental entity is not the boolean, but rather the proof that something is true".
For me it took a long time to get adjusted to this way of thinking and I'm still not sure I understand it. I think the key though is to understand it is a more-or-less completely different way of thinking.

Why does ocaml need both "let" and "let rec"? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Why are functions in Ocaml/F# not recursive by default?
OCaml uses let to define a new function, or let rec to define a function that is recursive. Why does it need both of these - couldn't we just use let for everything?
For example, to define a non-recursive successor function and recursive factorial in OCaml (actually, in the OCaml interpreter) I might write
let succ n = n + 1;;
let rec fact n =
if n = 0 then 1 else n * fact (n-1);;
Whereas in Haskell (GHCI) I can write
let succ n = n + 1
let fact n =
if n == 0 then 1 else n * fact (n-1)
Why does OCaml distinguish between let and let rec? Is it a performance issue, or something more subtle?
Well, having both available instead of only one gives the programmer tighter control on the scope. With let x = e1 in e2, the binding is only present in e2's environment, while with let rec x = e1 in e2 the binding is present in both e1 and e2's environments.
(Edit: I want to emphasize that it is not a performance issue, that makes no difference at all.)
Here are two situations where having this non-recursive binding is useful:
shadowing an existing definition with a refinement that use the old binding. Something like: let f x = (let x = sanitize x in ...), where sanitize is a function that ensures the input has some desirable property (eg. it takes the norm of a possibly-non-normalized vector, etc.). This is very useful in some cases.
metaprogramming, for example macro writing. Imagine I want to define a macro SQUARE(foo) that desugars into let x = foo in x * x, for any expression foo. I need this binding to avoid code duplication in the output (I don't want SQUARE(factorial n) to compute factorial n twice). This is only hygienic if the let binding is not recursive, otherwise I couldn't write let x = 2 in SQUARE(x) and get a correct result.
So I claim it is very important indeed to have both the recursive and the non-recursive binding available. Now, the default behaviour of the let-binding is a matter of convention. You could say that let x = ... is recursive, and one must use let nonrec x = ... to get the non-recursive binder. Picking one default or the other is a matter of which programming style you want to favor and there are good reasons to make either choice. Haskell suffers¹ from the unavailability of this non-recursive mode, and OCaml has exactly the same defect at the type level : type foo = ... is recursive, and there is no non-recursive option available -- see this blog post.
¹: when Google Code Search was available, I used it to search in Haskell code for the pattern let x' = sanitize x in .... This is the usual workaround when non-recursive binding is not available, but it's less safe because you risk writing x instead of x' by mistake later on -- in some cases you want to have both available, so picking a different name can be voluntary. A good idiom would be to use a longer variable name for the first x, such as unsanitized_x. Anyway, just looking for x' literally (no other variable name) and x1 turned a lot of results. Erlang (and all language that try to make variable shadowing difficult: Coffeescript, etc.) has even worse problems of this kind.
That said, the choice of having Haskell bindings recursive by default (rather than non-recursive) certainly makes sense, as it is consistent with lazy evaluation by default, which makes it really easy to build recursive values -- while strict-by-default languages have more restrictions on which recursive definitions make sense.

What is the difference between equality and equivalence?

I've read a few instances in reading mathematics and computer science that use the equivalence symbol ≡, (basically an '=' with three lines) and it always makes sense to me to read this as if it were equality. What is the difference between these two concepts?
Wikipedia: Equivalence relation:
In mathematics, an equivalence
relation is a binary relation between
two elements of a set which groups
them together as being "equivalent" in
some way. Let a, b, and c be arbitrary
elements of some set X. Then "a ~ b"
or "a ≡ b" denotes that a is
equivalent to b.
An equivalence relation "~" is reflexive, symmetric, and transitive.
In other words, = is just an instance of equivalence relation.
Edit: This seemingly simple criteria of being reflexive, symmetric, and transitive are not always trivial. See Bloch's Effective Java 2nd ed p. 35 for example,
public final class CaseInsensitiveString {
...
// broken
#Override public boolean equals(Object o) {
if (o instance of CaseInsensitiveString)
return s.equalsIgnoreCase(
((CaseInsensitiveString) o).s);
if (o instanceof String) // One-way interoperability!
return s.equalsIgnoreCase((String) o);
return false;
}
}
The above equals implementation breaks the symmetry because CaseInsensitiveString knows about String class, but the String class doesn't know about CaseInsensitiveString.
I take your question to be about math notation rather than programming. The triple equal sign you refer to can be written ≡ in HTML or \equiv in LaTeX.
a ≡ b most commonly means "a is defined to be b" or "let a be equal to b".
So 2+2=4 but φ ≡ (1+sqrt(5))/2.
Here's a handy equivalence table:
Mathematicians Computer scientists
-------------- -------------------
= ==
≡ =
(The other answers about equivalence relations are correct too but I don't think those are as common. There's also a ≡ b (mod m) which is pronounced "a is congruent to b, mod m" and in programmer parlance would be expressed as mod(a,m) == mod(b,m). In other words, a and b are equal after mod'ing by m.)
A lot of languages distinguish between equality of the objects and equality of the values of those objects.
Ruby for example has 3 different ways to test equality. The first, equal?, compares two variables to see if they point to the same instance. This is equivalent in a C-style language of doing a check to see if 2 pointers refer to the same address. The second method, ==, tests value equality. So 3 == 3.0 would be true in this case. The third, eql?, compares both value and class type.
Lisp also has different concepts of equality depending on what you're trying to test.
In languages that I have seen that differentiate between equality and equivalence, equality usually means the type and value are the same while equivalence means that just the values are the same. For example:
int i = 3;
double d = 3.0;
i and d would be have an equivalence relationship since they represent the same value but not equality since they have different types. Other languages may have different ideas of equivalence (such as whether two variables represent the same object).
The answers above are right / partially right but they don't explain what the difference is exactly. In theoretical computer science (and probably in other branches of maths) it has to do with quantification over free variables of the logical equation (that is when we use the two notations at once).
For me the best ways to understand the difference is:
By definition
A ≡ B
means
For all possible values of free variables in A and B, A = B
or
A ≡ B <=> [A = B]
By example
x=2x
iff (in fact iff is the same as ≡)
x=0
x ≡ 2x
iff (because it is not the case that x = 2x for all possible values of x)
False
I hope it helps
Edit:
Another thing that came to my head is the definitions of the two.
A = B is defined as A <= B and A >= B, where <= (smaller equal, not implies) can be any ordering relation
A ≡ B is defined as A <=> B (iff, if and only if, implies both sides), worth noting that implication is also an ordering relation and so it is possible (but less precise and often confusing) to use = instead of ≡.
I guess the conclusion is that when you see =, then you have to figure out the authors intention based on the context.
Take it outside the realm of programming.
(31) equal -- (having the same quantity, value, or measure as another; "on equal terms"; "all men are equal before the law")
equivalent, tantamount -- (being essentially equal to something; "it was as good as gold"; "a wish that was equivalent to a command"; "his statement was tantamount to an admission of guilt"
At least in my dictionary, 'equivelance' means its a good-enough subsitute for the original, but not necessarily identical, and likewise 'equality' conveys complete identical.
null == 0 # true , null is equivelant to 0 ( in php )
null === 0 # false, null is not equal to 0 ( in php )
( Some people use ≈ to represent nonidentical values instead )
The difference resides above all in the level at which the two concepts are introduced. '≡' is a symbol of formal logic where, given two propositions a and b, a ≡ b means (a => b AND b => a).
'=' is instead the typical example of an equivalence relation on a set, and presumes at least a theory of sets. When one defines a particular set, usually he provides it with a suitable notion of equality, which comes in the form of an equivalence relation and uses the symbol '='. For example, when you define the set Q of the rational numbers, you define equality a/b = c/d (where a/b and c/d are rational) if and only if ad = bc (where ad and bc are integers, the notion of equality for integers having already been defined elsewhere).
Sometimes you will find the informal notation f(x) ≡ g(x), where f and g are functions: It means that f and g have the same domain and that f(x) = g(x) for each x in such domain (this is again an equivalence relation). Finally, sometimes you find ≡ (or ~) as a generic symbol to denote an equivalence relation.
You could have two statements that have the same truth value (equivalent) or two statements that are the same (equality). As well the "equal sign with three bars" can also mean "is defined as."
Equality really is a special kind of equivalence relation, in fact. Consider what it means to say:
0.9999999999999999... = 1
That suggests that equality is just an equivalence relation on "string numbers" (which are defined more formally as functions from Z -> {0,...,9}). And we can see from this case, the equivalence classes are not even singletons.
The first problem is, what equality and equivalence mean in this case? Essentially, contexts are quite free to define these terms.
The general tenor I got from various definitions is: For values called equal, it should make no difference which one you read from.
The grossest example that violates this expectation is C++: x and y are said to be equal if x == y evaluates to true, and x and y are said to be equivalent if !(x < y) && !(y < x). Even apart from user-defined overloads of these operators, for floating-point numbers (float, double) those are not the same: All NaN values are equivalent to each other (in fact, equivalent to everything), but not equal to anything including themselves, and the values -0.0 and +0.0 compare equal (and equivalent) although you can distinguish them if you’re clever.
In a lot of cases, you’d need better terms to convey your intent precisely. Given two variables x and y,
identity or “the same” for expressing that there is only one object and x and y refer to it. Any change done through x is inadvertantly observable through y and vice versa. In Java, reference type variables are checked for identity using ==, in C# using the ReferenceEquals method. In C++, if x and y are references, std::addressof(x) == std::addressof(y) will do (whereas &x == &y will work most of the time, but & can be customized for user-defined types).
bitwise or structure equality for expressing that the internal representations of x and y are the same. Notice that bitwise equality breaks down when objects can reference (parts of) themselves internally. To get the intended meaning, the notion has to be refined in such cases to say: Structured the same. In D, bitwise equality is checked via is and C offers memcmp. I know of no language that has built-in structure equality testing.
indistinguishability or substitutability for expressing that values cannot be distinguished (through their public interface): If a function f takes two parameters and x and y are indistinguishable, the calls f(x, y), f(x, x), and f(y, y) always return indistinguishable values – unless f checks for identity (see bullet point above) directly or maybe by mutating the parameters. An example could be two search-trees that happen to contain indistinguishable elements, but the internal trees are layed-out differently. The internal tree layout is an implementation detail that normally cannot be observed through its public methods.
This is also called Leibniz-equality after Gottfried Wilhelm Leibniz who defined equality as the lack of differences.
equivalence for expressing that objects represent values considered essentially the same from some abstract reasoning. For an example for distinguishable equivalent values, observe that floating-point numbers have a negative zero -0.0 distinct from +0.0, and e.g. sign(1/x) is different for -0.0 and +0.0. Equivalence for floating-point numbers is checked using == in many languages with C-like syntax (aka. Algol syntax). Most object-oriented languages check equivalence of objects using an equals (or similarly named) method. C# has the IEquatable<T> interface to designate that the class has a standard/canonical/default equivalence relation defined on it. In Java, one overrides the equals method every class inherits from Object.
As you can see, the notions become increasingly vague. Checking for identity is something most languages can express. Identity and bitwise equality usually cannot be hooked by the programmer as the notions are independent from interpretations. There was a C++20 proposal, which ended up being rejected, that would have introduced the last two notions as strong† and weak equality†. († This site looks like CppReference, but is not; it is not up-to-date.) The original paper is here.
There are languages without mutation, primarily functional languages like Haskell. The difference between equality and equivalence there is less of an issue and tilts to the mathematical use of those words. (In math, generally speaking, (recursively defined) sequences are used instead of re-assignments.)
Everything C has, is also available to C++ and any language that can use C functionality. Everything said about C# is true for Visual Basic .NET and probably all languages built on the .NET framework. Analogously, Java represents the JRE languages that also include Kotlin and Scala.
If you just want stupid definitions without wisdom: An equivalence relation is a reflexive, symmetrical, and transitive binary relation on a set. Equality then is the intersection of all those equivalence relations.

Resources