I've read a few instances in reading mathematics and computer science that use the equivalence symbol ≡, (basically an '=' with three lines) and it always makes sense to me to read this as if it were equality. What is the difference between these two concepts?
Wikipedia: Equivalence relation:
In mathematics, an equivalence
relation is a binary relation between
two elements of a set which groups
them together as being "equivalent" in
some way. Let a, b, and c be arbitrary
elements of some set X. Then "a ~ b"
or "a ≡ b" denotes that a is
equivalent to b.
An equivalence relation "~" is reflexive, symmetric, and transitive.
In other words, = is just an instance of equivalence relation.
Edit: This seemingly simple criteria of being reflexive, symmetric, and transitive are not always trivial. See Bloch's Effective Java 2nd ed p. 35 for example,
public final class CaseInsensitiveString {
...
// broken
#Override public boolean equals(Object o) {
if (o instance of CaseInsensitiveString)
return s.equalsIgnoreCase(
((CaseInsensitiveString) o).s);
if (o instanceof String) // One-way interoperability!
return s.equalsIgnoreCase((String) o);
return false;
}
}
The above equals implementation breaks the symmetry because CaseInsensitiveString knows about String class, but the String class doesn't know about CaseInsensitiveString.
I take your question to be about math notation rather than programming. The triple equal sign you refer to can be written ≡ in HTML or \equiv in LaTeX.
a ≡ b most commonly means "a is defined to be b" or "let a be equal to b".
So 2+2=4 but φ ≡ (1+sqrt(5))/2.
Here's a handy equivalence table:
Mathematicians Computer scientists
-------------- -------------------
= ==
≡ =
(The other answers about equivalence relations are correct too but I don't think those are as common. There's also a ≡ b (mod m) which is pronounced "a is congruent to b, mod m" and in programmer parlance would be expressed as mod(a,m) == mod(b,m). In other words, a and b are equal after mod'ing by m.)
A lot of languages distinguish between equality of the objects and equality of the values of those objects.
Ruby for example has 3 different ways to test equality. The first, equal?, compares two variables to see if they point to the same instance. This is equivalent in a C-style language of doing a check to see if 2 pointers refer to the same address. The second method, ==, tests value equality. So 3 == 3.0 would be true in this case. The third, eql?, compares both value and class type.
Lisp also has different concepts of equality depending on what you're trying to test.
In languages that I have seen that differentiate between equality and equivalence, equality usually means the type and value are the same while equivalence means that just the values are the same. For example:
int i = 3;
double d = 3.0;
i and d would be have an equivalence relationship since they represent the same value but not equality since they have different types. Other languages may have different ideas of equivalence (such as whether two variables represent the same object).
The answers above are right / partially right but they don't explain what the difference is exactly. In theoretical computer science (and probably in other branches of maths) it has to do with quantification over free variables of the logical equation (that is when we use the two notations at once).
For me the best ways to understand the difference is:
By definition
A ≡ B
means
For all possible values of free variables in A and B, A = B
or
A ≡ B <=> [A = B]
By example
x=2x
iff (in fact iff is the same as ≡)
x=0
x ≡ 2x
iff (because it is not the case that x = 2x for all possible values of x)
False
I hope it helps
Edit:
Another thing that came to my head is the definitions of the two.
A = B is defined as A <= B and A >= B, where <= (smaller equal, not implies) can be any ordering relation
A ≡ B is defined as A <=> B (iff, if and only if, implies both sides), worth noting that implication is also an ordering relation and so it is possible (but less precise and often confusing) to use = instead of ≡.
I guess the conclusion is that when you see =, then you have to figure out the authors intention based on the context.
Take it outside the realm of programming.
(31) equal -- (having the same quantity, value, or measure as another; "on equal terms"; "all men are equal before the law")
equivalent, tantamount -- (being essentially equal to something; "it was as good as gold"; "a wish that was equivalent to a command"; "his statement was tantamount to an admission of guilt"
At least in my dictionary, 'equivelance' means its a good-enough subsitute for the original, but not necessarily identical, and likewise 'equality' conveys complete identical.
null == 0 # true , null is equivelant to 0 ( in php )
null === 0 # false, null is not equal to 0 ( in php )
( Some people use ≈ to represent nonidentical values instead )
The difference resides above all in the level at which the two concepts are introduced. '≡' is a symbol of formal logic where, given two propositions a and b, a ≡ b means (a => b AND b => a).
'=' is instead the typical example of an equivalence relation on a set, and presumes at least a theory of sets. When one defines a particular set, usually he provides it with a suitable notion of equality, which comes in the form of an equivalence relation and uses the symbol '='. For example, when you define the set Q of the rational numbers, you define equality a/b = c/d (where a/b and c/d are rational) if and only if ad = bc (where ad and bc are integers, the notion of equality for integers having already been defined elsewhere).
Sometimes you will find the informal notation f(x) ≡ g(x), where f and g are functions: It means that f and g have the same domain and that f(x) = g(x) for each x in such domain (this is again an equivalence relation). Finally, sometimes you find ≡ (or ~) as a generic symbol to denote an equivalence relation.
You could have two statements that have the same truth value (equivalent) or two statements that are the same (equality). As well the "equal sign with three bars" can also mean "is defined as."
Equality really is a special kind of equivalence relation, in fact. Consider what it means to say:
0.9999999999999999... = 1
That suggests that equality is just an equivalence relation on "string numbers" (which are defined more formally as functions from Z -> {0,...,9}). And we can see from this case, the equivalence classes are not even singletons.
The first problem is, what equality and equivalence mean in this case? Essentially, contexts are quite free to define these terms.
The general tenor I got from various definitions is: For values called equal, it should make no difference which one you read from.
The grossest example that violates this expectation is C++: x and y are said to be equal if x == y evaluates to true, and x and y are said to be equivalent if !(x < y) && !(y < x). Even apart from user-defined overloads of these operators, for floating-point numbers (float, double) those are not the same: All NaN values are equivalent to each other (in fact, equivalent to everything), but not equal to anything including themselves, and the values -0.0 and +0.0 compare equal (and equivalent) although you can distinguish them if you’re clever.
In a lot of cases, you’d need better terms to convey your intent precisely. Given two variables x and y,
identity or “the same” for expressing that there is only one object and x and y refer to it. Any change done through x is inadvertantly observable through y and vice versa. In Java, reference type variables are checked for identity using ==, in C# using the ReferenceEquals method. In C++, if x and y are references, std::addressof(x) == std::addressof(y) will do (whereas &x == &y will work most of the time, but & can be customized for user-defined types).
bitwise or structure equality for expressing that the internal representations of x and y are the same. Notice that bitwise equality breaks down when objects can reference (parts of) themselves internally. To get the intended meaning, the notion has to be refined in such cases to say: Structured the same. In D, bitwise equality is checked via is and C offers memcmp. I know of no language that has built-in structure equality testing.
indistinguishability or substitutability for expressing that values cannot be distinguished (through their public interface): If a function f takes two parameters and x and y are indistinguishable, the calls f(x, y), f(x, x), and f(y, y) always return indistinguishable values – unless f checks for identity (see bullet point above) directly or maybe by mutating the parameters. An example could be two search-trees that happen to contain indistinguishable elements, but the internal trees are layed-out differently. The internal tree layout is an implementation detail that normally cannot be observed through its public methods.
This is also called Leibniz-equality after Gottfried Wilhelm Leibniz who defined equality as the lack of differences.
equivalence for expressing that objects represent values considered essentially the same from some abstract reasoning. For an example for distinguishable equivalent values, observe that floating-point numbers have a negative zero -0.0 distinct from +0.0, and e.g. sign(1/x) is different for -0.0 and +0.0. Equivalence for floating-point numbers is checked using == in many languages with C-like syntax (aka. Algol syntax). Most object-oriented languages check equivalence of objects using an equals (or similarly named) method. C# has the IEquatable<T> interface to designate that the class has a standard/canonical/default equivalence relation defined on it. In Java, one overrides the equals method every class inherits from Object.
As you can see, the notions become increasingly vague. Checking for identity is something most languages can express. Identity and bitwise equality usually cannot be hooked by the programmer as the notions are independent from interpretations. There was a C++20 proposal, which ended up being rejected, that would have introduced the last two notions as strong† and weak equality†. († This site looks like CppReference, but is not; it is not up-to-date.) The original paper is here.
There are languages without mutation, primarily functional languages like Haskell. The difference between equality and equivalence there is less of an issue and tilts to the mathematical use of those words. (In math, generally speaking, (recursively defined) sequences are used instead of re-assignments.)
Everything C has, is also available to C++ and any language that can use C functionality. Everything said about C# is true for Visual Basic .NET and probably all languages built on the .NET framework. Analogously, Java represents the JRE languages that also include Kotlin and Scala.
If you just want stupid definitions without wisdom: An equivalence relation is a reflexive, symmetrical, and transitive binary relation on a set. Equality then is the intersection of all those equivalence relations.
Related
The problem I am thinking about is hash functions, although I'm mainly interested in the mathematical terms/background to describe my requested property.
Consider the case where I have a hash-function taking a secret (S) and a number (X) which creates another number (Y):
Hash : S, X → Y
I then define two different hash-functions with their own secrets (a and b):
H1(X) := Hash(a, X)
H2(X) := Hash(b, X)
The property I want is that:
H1(H2(x)) = H2(H1(X))
(I think this is called that the functions commute?)
Taking a step back from programming and thinking about math we can look at different operations. If the function consist of one operation only, then I'm quite sure that this property will always be satisfied if the operation has both associative and commutative properties. However there are operations which are order insensitive but non-commutative, e.g. division. How does I know if my choice of hash function will make it commute?
Some examples that seems to work:
Simple addition:
Hash(S, X) := S + X
Bitwise xor:
Hash(S, X) := S xor X
Modular exponentiation:
Hash(S, X) := X^S mod p
if S ∈ N and X ∈ Z
How do I know if my choice of hash function will make it commute?
Commutativity under composition is an unusual property. It's not typical unless the functions are using a commutative operation of some underlying algebraic structures, such as "multiply by x". This is the form of your three examples.
The practical answer is "if you don't have a proof that it's commutative, assume it's not commutative". There's no general algorithm that will provide that proof for you.
I am very confused in how CLP works in Prolog. Not only do I find it hard to see the benefits (I do see it in specific cases but find it hard to generalise those) but more importantly, I can hardly make up how to correctly write a recursive predicate. Which of the following would be the correct form in a CLP(R) way?
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
factorial(PrevN, NewF),
F = N * NewF}.
or
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
F = N * NewF},
factorial(PrevN, NewF).
In other words, I am not sure when I should write code outside the constraints. To me, the first case would seem more logical, because PrevN and NewF belong to the constraints. But if that's true, I am curious to see in which cases it is useful to use predicates outside the constraints in a recursive function.
There are several overlapping questions and issues in your post, probably too many to coherently address to your complete satisfaction in a single post.
Therefore, I would like to state a few general principles first, and then—based on that—make a few specific comments about the code you posted.
First, I would like to address what I think is most important in your case:
LP ⊆ CLP
This means simply that CLP can be regarded as a superset of logic programming (LP). Whether it is to be considered a proper superset or if, in fact, it makes even more sense to regard them as denoting the same concept is somewhat debatable. In my personal view, logic programming without constraints is much harder to understand and much less usable than with constraints. Given that also even the very first Prolog systems had a constraint like dif/2 and also that essential built-in predicates like (=)/2 perfectly fit the notion of "constraint", the boundaries, if they exist at all, seem at least somewhat artificial to me, suggesting that:
LP ≈ CLP
Be that as it may, the key concept when working with CLP (of any kind) is that the constraints are available as predicates, and used in Prolog programs like all other predicates.
Therefore, whether you have the goal factorial(N, F) or { N > 0 } is, at least in principle, the same concept: Both mean that something holds.
Note the syntax: The CLP(ℛ) constraints have the form { C }, which is {}(C) in prefix notation.
Note that the goal factorial(N, F) is not a CLP(ℛ) constraint! Neither is the following:
?- { factorial(N, F) }.
ERROR: Unhandled exception: type_error({factorial(_3958,_3960)},...)
Thus, { factorial(N, F) } is not a CLP(ℛ) constraint either!
Your first example therefore cannot work for this reason alone already. (In addition, you have a syntax error in the clause head: factorial (, so it also does not compile at all.)
When you learn working with a constraint solver, check out the predicates it provides. For example, CLP(ℛ) provides {}/1 and a few other predicates, and has a dedicated syntax for stating relations that hold about floating point numbers (in this case).
Other constraint solver provide their own predicates for describing the entities of their respective domains. For example, CLP(FD) provides (#=)/2 and a few other predicates to reason about integers. dif/2 lets you reason about any Prolog term. And so on.
From the programmer's perspective, this is exactly the same as using any other predicate of your Prolog system, whether it is built-in or stems from a library. In principle, it's all the same:
A goal like list_length(Ls, L) can be read as: "The length of the list Ls is L."
A goal like { X = A + B } can be read as: The number X is equal to the sum of A and B. For example, if you are using CLP(Q), it is clear that we are talking about rational numbers in this case.
In your second example, the body of the clause is a conjunction of the form (A, B), where A is a CLP(ℛ) constraint, and B is a goal of the form factorial(PrevN, NewF).
The point is: The CLP(ℛ) constraint is also a goal! Check it out:
?- write_canonical({a,b,c}).
{','(a,','(b,c))}
true.
So, you are simply using {}/1 from library(clpr), which is one of the predicates it exports.
You are right that PrevN and NewF belong to the constraints. However, factorial(PrevN, NewF) is not part of the mini-language that CLP(ℛ) implements for reasoning over floating point numbers. Therefore, you cannot pull this goal into the CLP(ℛ)-specific part.
From a programmer's perspective, a major attraction of CLP is that it blends in completely seamlessly into "normal" logic programming, to the point that it can in fact hardly be distinguished at all from it: The constraints are simply predicates, and written down like all other goals.
Whether you label a library predicate a "constraint" or not hardly makes any difference: All predicates can be regarded as constraints, since they can only constrain answers, never relax them.
Note that both examples you post are recursive! That's perfectly OK. In fact, recursive predicates will likely be the majority of situations in which you use constraints in the future.
However, for the concrete case of factorial, your Prolog system's CLP(FD) constraints are likely a better fit, since they are completely dedicated to reasoning about integers.
Pure functional programming languages do not allow mutable data, but some computations are more naturally/intuitively expressed in an imperative way -- or an imperative version of an algorithm may be more efficient. I am aware that most functional languages are not pure, and let you assign/reassign variables and do imperative things but generally discourage it.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)? That way, all functions maintain referential transparency (they always give the same return value given the same arguments), but within a function, a computation can be expressed in imperative terms (like, say, a while loop).
IO and such could still be accomplished in the normal functional ways - through monads or passing around a "world" or "universe" token.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)?
Good question. I think the answer is that mutable locals are of limited practical value but mutable heap-allocated data structures (primarily arrays) are enormously valuable and form the backbone of many important collections including efficient stacks, queues, sets and dictionaries. So restricting mutation to locals only would not give an otherwise purely functional language any of the important benefits of mutation.
On a related note, communicating sequential processes exchanging purely functional data structures offer many of the benefits of both worlds because the sequential processes can use mutation internally, e.g. mutable message queues are ~10x faster than any purely functional queues. For example, this is idiomatic in F# where the code in a MailboxProcessor uses mutable data structures but the messages communicated between them are immutable.
Sorting is a good case study in this context. Sedgewick's quicksort in C is short and simple and hundreds of times faster than the fastest purely functional sort in any language. The reason is that quicksort mutates the array in-place. Mutable locals would not help. Same story for most graph algorithms.
The short answer is: there are systems to allow what you want. For example, you can do it using the ST monad in Haskell (as referenced in the comments).
The ST monad approach is from Haskell's Control.Monad.ST. Code written in the ST monad can use references (STRef) where convenient. The nice part is that you can even use the results of the ST monad in pure code, as it is essentially self-contained (this is basically what you were wanting in the question).
The proof of this self-contained property is done through the type-system. The ST monad carries a state-thread parameter, usually denoted with a type-variable s. When you have such a computation you'll have monadic result, with a type like:
foo :: ST s Int
To actually turn this into a pure result, you have to use
runST :: (forall s . ST s a) -> a
You can read this type like: give me a computation where the s type parameter doesn't matter, and I can give you back the result of the computation, without the ST baggage. This basically keeps the mutable ST variables from escaping, as they would carry the s with them, which would be caught by the type system.
This can be used to good effect on pure structures that are implemented with underlying mutable structures (like the vector package). One can cast off the immutability for a limited time to do something that mutates the underlying array in place. For example, one could combine the immutable Vector with an impure algorithms package to keep the most of the performance characteristics of the in place sorting algorithms and still get purity.
In this case it would look something like:
pureSort :: Ord a => Vector a -> Vector a
pureSort vector = runST $ do
mutableVector <- thaw vector
sort mutableVector
freeze mutableVector
The thaw and freeze functions are linear-time copying, but this won't disrupt the overall O(n lg n) running time. You can even use unsafeFreeze to avoid another linear traversal, as the mutable vector isn't used again.
"Pure functional programming languages do not allow mutable data" ... actually it does, you just simply have to recognize where it lies hidden and see it for what it is.
Mutability is where two things have the same name and mutually exclusive times of existence so that they may be treated as "the same thing at different times". But as every Zen philosopher knows, there is no such thing as "same thing at different times". Everything ceases to exist in an instant and is inherited by its successor in possibly changed form, in a (possibly) uncountably-infinite succession of instants.
In the lambda calculus, mutability thus takes the form illustrated by the following example: (λx (λx f(x)) (x+1)) (x+1), which may also be rendered as "let x = x + 1 in let x = x + 1 in f(x)" or just "x = x + 1, x = x + 1, f(x)" in a more C-like notation.
In other words, "name clash" of the "lambda calculus" is actually "update" of imperative programming, in disguise. They are one and the same - in the eyes of the Zen (who is always right).
So, let's refer to each instant and state of the variable as the Zen Scope of an object. One ordinary scope with a mutable object equals many Zen Scopes with constant, unmutable objects that either get initialized if they are the first, or inherit from their predecessor if they are not.
When people say "mutability" they're misidentifying and confusing the issue. Mutability (as we've just seen here) is a complete red herring. What they actually mean (even unbeknonwst to themselves) is infinite mutability; i.e. the kind which occurs in cyclic control flow structures. In other words, what they're actually referring to - as being specifically "imperative" and not "functional" - is not mutability at all, but cyclic control flow structures along with the infinite nesting of Zen Scopes that this entails.
The key feature that lies absent in the lambda calculus is, thus, seen not as something that may be remedied by the inclusion of an overwrought and overthought "solution" like monads (though that doesn't exclude the possibility of it getting the job done) but as infinitary terms.
A control flow structure is the wrapping of an unwrapped (possibility infinite) decision tree structure. Branches may re-converge. In the corresponding unwrapped structure, they appear as replicated, but separate, branches or subtrees. Goto's are direct links to subtrees. A goto or branch that back-branches to an earlier part of a control flow structure (the very genesis of the "cycling" of a cyclic control flow structure) is a link to an identically-shaped copy of the entire structure being linked to. Corresponding to each structure is its Universally Unrolled decision tree.
More precisely, we may think of a control-flow structure as a statement that precedes an actual expression that conditions the value of that expression. The archetypical case in point is Landin's original case, itself (in his 1960's paper, where he tried to lambda-ize imperative languages): let x = 1 in f(x). The "x = 1" part is the statement, the "f(x)" is the value being conditioned by the statement. In C-like form, we could write this as x = 1, f(x).
More generally, corresponding to each statement S and expression Q is an expression S[Q] which represents the result Q after S is applied. Thus, (x = 1)[f(x)] is just λx f(x) (x + 1). The S wraps around the Q. If S contains cyclic control flow structures, the wrapping will be infinitary.
When Landin tried to work out this strategy, he hit a hard wall when he got to the while loop and went "Oops. Never mind." and fell back into what become an overwrought and overthought solution, while this simple (and in retrospect, obvious) answer eluded his notice.
A while loop "while (x < n) x = x + 1;" - which has the "infinite mutability" mentioned above, may itself be treated as an infinitary wrapper, "if (x < n) { x = x + 1; if (x < 1) { x = x + 1; if (x < 1) { x = x + 1; ... } } }". So, when it wraps around an expression Q, the result is (in C-like notation) "x < n? (x = x + 1, x < n? (x = x + 1, x < n? (x = x + 1, ...): Q): Q): Q", which may be directly rendered in lambda form as "x < n? (λx x < n (λx x < n? (λx·...) (x + 1): Q) (x + 1): Q) (x + 1): Q". This shows directly the connection between cyclicity and infinitariness.
This is an infinitary expression that, despite being infinite, has only a finite number of distinct subexpressions. Just as we can think of there being a Universally Unrolled form to this expression - which is similar to what's shown above (an infinite decision tree) - we can also think of there being a Maximally Rolled form, which could be obtained by labelling each of the distinct subexpressions and referring to the labels, instead. The key subexpressions would then be:
A: x < n? goto B: Q
B: x = x + 1, goto A
The subexpression labels, here, are "A:" and "B:", while the references to the subexpressions so labelled as "goto A" and "goto B", respectively. So, by magic, the very essence of Imperativitity emerges directly out of the infinitary lambda calculus, without any need to posit it separately or anew.
This way of viewing things applies even down to the level of binary files. Every interpretation of every byte (whether it be a part of an opcode of an instruction that starts 0, 1, 2 or more bytes back, or as part of a data structure) can be treated as being there in tandem, so that the binary file is a rolling up of a much larger universally unrolled structure whose physical byte code representation overlaps extensively with itself.
Thus, emerges the imperative programming language paradigm automatically out of the pure lambda calculus, itself, when the calculus is extended to include infinitary terms. The control flow structure is directly embodied in the very structure of the infinitary expression, itself; and thus requires no additional hacks (like Landin's or later descendants, like monads) - as it's already there.
This synthesis of the imperative and functional paradigms arose in the late 1980's via the USENET, but has not (yet) been published. Part of it was already implicit in the treatment (dating from around the same time) given to languages, like Prolog-II, and the much earlier treatment of cyclic recursive structures by infinitary expressions by Irene Guessarian LNCS 99 "Algebraic Semantics".
Now, earlier I said that the magma-based formulation might get you to the same place, or to an approximation thereof. I believe there is a kind of universal representation theorem of some sort, which asserts that the infinitary based formulation provides a purely syntactic representation, and that the semantics that arise from the monad-based representation factors through this as "monad-based semantics" = "infinitary lambda calculus" + "semantics of infinitary languages".
Likewise, we may think of the "Q" expressions above as being continuations; so there may also be a universal representation theorem for continuation semantics, which similarly rolls this formulation back into the infinitary lambda calculus.
At this point, I've said nothing about non-rational infinitary terms (i.e. infinitary terms which possess an infinite number of distinct subterms and no finite Minimal Rolling) - particularly in relation to interprocedural control flow semantics. Rational terms suffice to account for loops and branches, and so provide a platform for intraprocedural control flow semantics; but not as much so for the call-return semantics that are the essential core element of interprocedural control flow semantics, if you consider subprograms to be directly represented as embellished, glorified macros.
There may be something similar to the Chomsky hierarchy for infinitary term languages; so that type 3 corresponds to rational terms, type 2 to "algebraic terms" (those that can be rolled up into a finite set of "goto" references and "macro" definitions), and type 0 for "transcendental terms". That is, for me, an unresolved loose end, as well.
I came upon the Curry-Howard Isomorphism relatively late in my programming life, and perhaps this contributes to my being utterly fascinated by it. It implies that for every programming concept there exists a precise analogue in formal logic, and vice versa. Here's a "basic" list of such analogies, off the top of my head:
program/definition | proof
type/declaration | proposition
inhabited type | theorem/lemma
function | implication
function argument | hypothesis/antecedent
function result | conclusion/consequent
function application | modus ponens
recursion | induction
identity function | tautology
non-terminating function | absurdity/contradiction
tuple | conjunction (and)
disjoint union | disjunction (or) -- corrected by Antal S-Z
parametric polymorphism | universal quantification
So, to my question: what are some of the more interesting/obscure implications of this isomorphism? I'm no logician so I'm sure I've only scratched the surface with this list.
For example, here are some programming notions for which I'm unaware of pithy names in logic:
currying | "((a & b) => c) iff (a => (b => c))"
scope | "known theory + hypotheses"
And here are some logical concepts which I haven't quite pinned down in programming terms:
primitive type? | axiom
set of valid programs? | theory
Edit:
Here are some more equivalences collected from the responses:
function composition | syllogism -- from Apocalisp
continuation-passing | double negation -- from camccann
Since you explicitly asked for the most interesting and obscure ones:
You can extend C-H to many interesting logics and formulations of logics to obtain a really wide variety of correspondences. Here I've tried to focus on some of the more interesting ones rather than on the obscure, plus a couple of fundamental ones that haven't come up yet.
evaluation | proof normalisation/cut-elimination
variable | assumption
S K combinators | axiomatic formulation of logic
pattern matching | left-sequent rules
subtyping | implicit entailment (not reflected in expressions)
intersection types | implicit conjunction
union types | implicit disjunction
open code | temporal next
closed code | necessity
effects | possibility
reachable state | possible world
monadic metalanguage | lax logic
non-termination | truth in an unobservable possible world
distributed programs | modal logic S5/Hybrid logic
meta variables | modal assumptions
explicit substitutions | contextual modal necessity
pi-calculus | linear logic
EDIT: A reference I'd recommend to anyone interested in learning more about extensions of C-H:
"A Judgmental Reconstruction of Modal Logic" http://www.cs.cmu.edu/~fp/papers/mscs00.pdf - this is a great place to start because it starts from first principles and much of it is aimed to be accessible to non-logicians/language theorists. (I'm the second author though, so I'm biased.)
You're muddying things a little bit regarding nontermination. Falsity is represented by uninhabited types, which by definition can't be non-terminating because there's nothing of that type to evaluate in the first place.
Non-termination represents contradiction--an inconsistent logic. An inconsistent logic will of course allow you to prove anything, including falsity, however.
Ignoring inconsistencies, type systems typically correspond to an intuitionistic logic, and are by necessity constructivist, which means certain pieces of classical logic can't be expressed directly, if at all. On the other hand this is useful, because if a type is a valid constructive proof, then a term of that type is a means of constructing whatever you've proven the existence of.
A major feature of the constructivist flavor is that double negation is not equivalent to non-negation. In fact, negation is rarely a primitive in a type system, so instead we can represent it as implying falsehood, e.g., not P becomes P -> Falsity. Double negation would thus be a function with type (P -> Falsity) -> Falsity, which clearly is not equivalent to something of just type P.
However, there's an interesting twist on this! In a language with parametric polymorphism, type variables range over all possible types, including uninhabited ones, so a fully polymorphic type such as ∀a. a is, in some sense, almost-false. So what if we write double almost-negation by using polymorphism? We get a type that looks like this: ∀a. (P -> a) -> a. Is that equivalent to something of type P? Indeed it is, merely apply it to the identity function.
But what's the point? Why write a type like that? Does it mean anything in programming terms? Well, you can think of it as a function that already has something of type P somewhere, and needs you to give it a function that takes P as an argument, with the whole thing being polymorphic in the final result type. In a sense, it represents a suspended computation, waiting for the rest to be provided. In this sense, these suspended computations can be composed together, passed around, invoked, whatever. This should begin to sound familiar to fans of some languages, like Scheme or Ruby--because what it means is that double-negation corresponds to continuation-passing style, and in fact the type I gave above is exactly the continuation monad in Haskell.
Your chart is not quite right; in many cases you have confused types with terms.
function type implication
function proof of implication
function argument proof of hypothesis
function result proof of conclusion
function application RULE modus ponens
recursion n/a [1]
structural induction fold (foldr for lists)
mathematical induction fold for naturals (data N = Z | S N)
identity function proof of A -> A, for all A
non-terminating function n/a [2]
tuple normal proof of conjunction
sum disjunction
n/a [3] first-order universal quantification
parametric polymorphism second-order universal quantification
currying (A,B) -> C -||- A -> (B -> C), for all A,B,C
primitive type axiom
types of typeable terms theory
function composition syllogism
substitution cut rule
value normal proof
[1] The logic for a Turing-complete functional language is inconsistent. Recursion has no correspondence in consistent theories. In an inconsistent logic/unsound proof theory you could call it a rule which causes inconsistency/unsoundness.
[2] Again, this is a consequence of completeness. This would be a proof of an anti-theorem if the logic were consistent -- thus, it can't exist.
[3] Doesn't exist in functional languages, since they elide first-order logical features: all quantification and parametrization is done over formulae. If you had first-order features, there would be a kind other than *, * -> *, etc.; the kind of elements of the domain of discourse. For example, in Father(X,Y) :- Parent(X,Y), Male(X), X and Y range over the domain of discourse (call it Dom), and Male :: Dom -> *.
function composition | syllogism
I really like this question. I don't know a whole lot, but I do have a few things (assisted by the Wikipedia article, which has some neat tables and such itself):
I think that sum types/union types (e.g. data Either a b = Left a | Right b) are equivalent to inclusive disjunction. And, though I'm not very well acquainted with Curry-Howard, I think this demonstrates it. Consider the following function:
andImpliesOr :: (a,b) -> Either a b
andImpliesOr (a,_) = Left a
If I understand things correctly, the type says that (a ∧ b) → (a ★ b) and the definition says that this is true, where ★ is either inclusive or exclusive or, whichever Either represents. You have Either representing exclusive or, ⊕; however, (a ∧ b) ↛ (a ⊕ b). For instance, ⊤ ∧ ⊤ ≡ ⊤, but ⊤ ⊕ ⊥ ≡ ⊥, and ⊤ ↛ ⊥. In other words, if both a and b are true, then the hypothesis is true but the conclusion is false, and so this implication must be false. However, clearly, (a ∧ b) → (a ∨ b), since if both a and b are true, then at least one is true. Thus, if discriminated unions are some form of disjunction, they must be the inclusive variety. I think this holds as a proof, but feel more than free to disabuse me of this notion.
Similarly, your definitions for tautology and absurdity as the identity function and non-terminating functions, respectively, are a bit off. The true formula is represented by the unit type, which is the type which has only one element (data ⊤ = ⊤; often spelled () and/or Unit in functional programming languages). This makes sense: since that type is guaranteed to be inhabited, and since there's only one possible inhabitant, it must be true. The identity function just represents the particular tautology that a → a.
Your comment about non-terminating functions is, depending on what precisely you meant, more off. Curry-Howard functions on the type system, but non-termination is not encoded there. According to Wikipedia, dealing with non-termination is an issue, as adding it produces inconsistent logics (e.g., I can define wrong :: a -> b by wrong x = wrong x, and thus “prove” that a → b for any a and b). If this is what you meant by “absurdity”, then you're exactly correct. If instead you meant the false statement, then what you want instead is any uninhabited type, e.g. something defined by data ⊥—that is, a data type without any way to construct it. This ensures that it has no values at all, and so it must be uninhabited, which is equivalent to false. I think you could probably also use a -> b, since if we forbid non-terminating functions, then this is also uninhabited, but I'm not 100% sure.
Wikipedia says that axioms are encoded in two different ways, depending on how you interpret Curry-Howard: either in the combinators or in the variables. I think the combinator view means that the primitive functions we are given encode the things we can say by default (similar to the way that modus ponens is an axiom because function application is primitive). And I think that the variable view may actually mean the same thing—combinators, after all, are just global variables which are particular functions. As for primitive types: if I'm thinking about this correctly, then I think that primitive types are the entities—the primitive objects that we're trying to prove things about.
According to my logic and semantics class, the fact that (a ∧ b) → c ≡ a → (b → c) (and also that b → (a → c)) is called the exportation equivalence law, at least in natural deduction proofs. I didn't notice at the time that it was just currying—I wish I had, because that's cool!
While we now have a way to represent inclusive disjunction, we don't have a way to represent the exclusive variety. We should be able to use the definition of exclusive disjunction to represent it: a ⊕ b ≡ (a ∨ b) ∧ ¬(a ∧ b). I don't know how to write negation, but I do know that ¬p ≡ p → ⊥, and both implication and falsehood are easy. We should thus able to represent exclusive disjunction by:
data ⊥
data Xor a b = Xor (Either a b) ((a,b) -> ⊥)
This defines ⊥ to be the empty type with no values, which corresponds to falsity; Xor is then defined to contain both (and) Either an a or a b (or) and a function (implication) from (a,b) (and) to the bottom type (false). However, I have no idea what this means. (Edit 1: Now I do, see the next paragraph!) Since there are no values of type (a,b) -> ⊥ (are there?), I can't fathom what this would mean in a program. Does anyone know a better way to think about either this definition or another one? (Edit 1: Yes, camccann.)
Edit 1: Thanks to camccann's answer (more particularly, the comments he left on it to help me out), I think I see what's going on here. To construct a value of type Xor a b, you need to provide two things. First, a witness to the existence of an element of either a or b as the first argument; that is, a Left a or a Right b. And second, a proof that there are not elements of both types a and b—in other words, a proof that (a,b) is uninhabited—as the second argument. Since you'll only be able to write a function from (a,b) -> ⊥ if (a,b) is uninhabited, what does it mean for that to be the case? That would mean that some part of an object of type (a,b) could not be constructed; in other words, that at least one, and possibly both, of a and b are uninhabited as well! In this case, if we're thinking about pattern matching, you couldn't possibly pattern-match on such a tuple: supposing that b is uninhabited, what would we write that could match the second part of that tuple? Thus, we cannot pattern match against it, which may help you see why this makes it uninhabited. Now, the only way to have a total function which takes no arguments (as this one must, since (a,b) is uninhabited) is for the result to be of an uninhabited type too—if we're thinking about this from a pattern-matching perspective, this means that even though the function has no cases, there's no possible body it could have either, and so everything's OK.
A lot of this is me thinking aloud/proving (hopefully) things on the fly, but I hope it's useful. I really recommend the Wikipedia article; I haven't read through it in any sort of detail, but its tables are a really nice summary, and it's very thorough.
Here's a slightly obscure one that I'm surprised wasn't brought up earlier: "classical" functional reactive programming corresponds to temporal logic.
Of course, unless you're a philosopher, mathematician or obsessive functional programmer, this probably brings up several more questions.
So, first off: what is functional reactive programming? It's a declarative way to work with time-varying values. This is useful for writing things like user interfaces because inputs from the user are values that vary over time. "Classical" FRP has two basic data types: events and behaviors.
Events represent values which only exist at discrete times. Keystrokes are a great example: you can think of the inputs from the keyboard as a character at a given time. Each keypress is then just a pair with the character of the key and the time it was pressed.
Behaviors are values that exist constantly but can be changing continuously. The mouse position is a great example: it is just a behavior of x, y coordinates. After all, the mouse always has a position and, conceptually, this position changes continually as you move the mouse. After all, moving the mouse is a single protracted action, not a bunch of discrete steps.
And what is temporal logic? Appropriately enough, it's a set of logical rules for dealing with propositions quantified over time. Essentially, it extends normal first-order logic with two quantifiers: □ and ◇. The first means "always": read □φ as "φ always holds". The second is "eventually": ◇φ means that "φ will eventually hold". This is a particular kind of modal logic. The following two laws relate the quantifiers:
□φ ⇔ ¬◇¬φ
◇φ ⇔ ¬□¬φ
So □ and ◇ are dual to each other in the same way as ∀ and ∃.
These two quantifiers correspond to the two types in FRP. In particular, □ corresponds to behaviors and ◇ corresponds to events. If we think about how these types are inhabited, this should make sense: a behavior is inhabited at every possible time, while an event only happens once.
Related to the relationship between continuations and double negation, the type of call/cc is Peirce's law http://en.wikipedia.org/wiki/Call-with-current-continuation
C-H is usually stated as correspondence between intuitionistic logic and programs. However if we add the call-with-current-continuation (callCC) operator (whose type corresponds to Peirce's law), we get a correspondence between classical logic and programs with callCC.
2-continuation | Sheffer stoke
n-continuation language | Existential graph
Recursion | Mathematical Induction
One thing that is important, but have not yet being investigated is the relationship of 2-continuation (continuations that takes 2 parameters) and Sheffer stroke. In classic logic, Sheffer stroke can form a complete logic system by itself (plus some non-operator concepts). Which means the familiar and, or, not can be implemented using only the Sheffer stoke or nand.
This is an important fact of its programming type correspondence because it prompts that a single type combinator can be used to form all other types.
The type signature of a 2-continuation is (a,b) -> Void. By this implementation we can define 1-continuation (normal continuations) as (a,a) -> Void, product type as ((a,b)->Void,(a,b)->Void)->Void, sum type as ((a,a)->Void,(b,b)->Void)->Void. This gives us an impressive of its power of expressiveness.
If we dig further, we will find out that Piece's existential graph is equivalent to a language with the only data type is n-continuation, but I didn't see any existing languages is in this form. So inventing one could be interesting, I think.
While it's not a simple isomorphism, this discussion of constructive LEM is a very interesting result. In particular, in the conclusion section, Oleg Kiselyov discusses how the use of monads to get double-negation elimination in a constructive logic is analogous to distinguishing computationally decidable propositions (for which LEM is valid in a constructive setting) from all propositions. The notion that monads capture computational effects is an old one, but this instance of the Curry--Howard isomorphism helps put it in perspective and helps get at what double-negation really "means".
First-class continuations support allows you to express $P \lor \neg P$.
The trick is based on the fact that not calling the continuation and exiting with some expression is equivalent to calling the continuation with that same expression.
For more detailed view please see: http://www.cs.cmu.edu/~rwh/courses/logic/www-old/handouts/callcc.pdf
Is it impossible to know if two functions are equivalent? For example, a compiler writer wants to determine if two functions that the developer has written perform the same operation, what methods can he use to figure that one out? Or can what can we do to find out that two TMs are identical? Is there a way to normalize the machines?
Edit: If the general case is undecidable, how much information do you need to have before you can correctly say that two functions are equivalent?
Given an arbitrary function, f, we define a function f' which returns 1 on input n if f halts on input n. Now, for some number x we define a function g which, on input n, returns 1 if n = x, and otherwise calls f'(n).
If functional equivalence were decidable, then deciding whether g is identical to f' decides whether f halts on input x. That would solve the Halting problem. Related to this discussion is Rice's theorem.
Conclusion: functional equivalence is undecidable.
There is some discussion going on below about the validity of this proof. So let me elaborate on what the proof does, and give some example code in Python.
The proof creates a function f' which on input n starts to compute f(n). When this computation finishes, f' returns 1. Thus, f'(n) = 1 iff f halts on input n, and f' doesn't halt on n iff f doesn't. Python:
def create_f_prime(f):
def f_prime(n):
f(n)
return 1
return f_prime
Then we create a function g which takes n as input, and compares it to some value x. If n = x, then g(n) = g(x) = 1, else g(n) = f'(n). Python:
def create_g(f_prime, x):
def g(n):
return 1 if n == x else f_prime(n)
return g
Now the trick is, that for all n != x we have that g(n) = f'(n). Furthermore, we know that g(x) = 1. So, if g = f', then f'(x) = 1 and hence f(x) halts. Likewise, if g != f' then necessarily f'(x) != 1, which means that f(x) does not halt. So, deciding whether g = f' is equivalent to deciding whether f halts on input x. Using a slightly different notation for the above two functions, we can summarise all this as follows:
def halts(f, x):
def f_prime(n): f(n); return 1
def g(n): return 1 if n == x else f_prime(n)
return equiv(f_prime, g) # If only equiv would actually exist...
I'll also toss in an illustration of the proof in Haskell (GHC performs some loop detection, and I'm not really sure whether the use of seq is fool proof in this case, but anyway):
-- Tells whether two functions f and g are equivalent.
equiv :: (Integer -> Integer) -> (Integer -> Integer) -> Bool
equiv f g = undefined -- If only this could be implemented :)
-- Tells whether f halts on input x
halts :: (Integer -> Integer) -> Integer -> Bool
halts f x = equiv f' g
where
f' n = f n `seq` 1
g n = if n == x then 1 else f' n
Yes, it is undecidable. This is a form of the halting problem.
Note that I mean that it's undecidable for the general case. Just as you can determine halting for sufficiently simple programs, you can determine equivalency for sufficiently simple functions, and it's not inconceivable that this could be of some use for an application. But you cannot make a general method for determining equivalency of any two possible functions.
The general case is undecidable by Rice's Theorem, as others have already said (Rice's Theorem essentially says that any nontrivial property of a Turing-complete formalism is undecidable).
There are special cases where equivalence is decidable, the best-known example is probably equivalence of finite state automata. If I remember correctly equivalence of pushdown automata is already undecidable by reduction to Post's Correspondence Problem.
To prove that two given functions are equivalent you would require as input a proof of the equivalence in some formalism, which you can then check for correctness. The essential parts of this proof are the loop invariants, as these cannot be derived automatically.
In the general case it's undecidable whether two turing machines have always the same output for the identical input. Since you can't even decide whether a tm will halt on the input, I don't see how it should be possible to decide whether both halt AND output the same result...
It depends on what you mean by "function."
If the functions you are talking about are guaranteed to terminate -- for example, because they are written in a language in which all functions terminate -- and operate over finite domains, it's "easy" (although it might still take a very, very long time): two functions are equivalent if and only if they have the same value at every point in their shared domain.
This is called "extensional" equivalence to distinguish it from syntactic or "intensional" equivalence. Two functions are extensionally equivalent if they are intensionally equivalent, but the converse does not hold.
(All the other people above noting that it is undecidable in the general case are quite correct, of course, this is a fairly uncommon -- and usually uninteresting in practice -- special case.)
Note that the halting problem is decidable for linear bounded automata. Real computers are always bounded, and programs for them will always loop back to a previous configuration after sufficiently many steps. If you are using an unbounded (imaginary) computer to keep track of the configurations, you can detect that looping and take it into account.
You could check in your compiler to see if they are "exactly" identical, sure, but determining if they return identical values would be difficult and time consuming. You would have to basically call that method and perform its routine over an infinite number of possible calls and compare the value with that from the other routine.
Even if you could do the above, you would have to account for what global values change within the function, what objects are destroyed / changed in the function that do not affect the outcome.
You can really only compare the compiled code. So compile the compiled code to refactor?
Imagine the run time on trying to compile the code with "that" compiler. You could spend a LOT of time on here answering questions saying: "busy compiling..." :)
I think if you allow side effects, you can show that the problem can be morphed into the Post correspondence problem so you can't, in general, show if two functions are even capable of having the same side effects.
Is it impossible to know if two functions are equivalent?
No. It is possible to know that two functions are equivalent. If you have f(x), you know f(x) is equivalent to f(x).
If the question is "it is possible to determine if f(x) and g(x) are equivalent with f and g being any function and for all functions g and f", then the answer is no.
However, if the question is "can a compiler determine that if f(x) and g(x) are equivalent that they are equivalent?", then the answer is yes if they are equivalent in both output and side effects and order of side effects. In other words, if one is a transformation of the other that preserves behavior, then a compiler of sufficient complexity should be able to detect it. It also means that the compiler can transform a function f into a more optimal and equivalent function g given a particular definition of equivalent. It gets even more fun if f includes undefined behavior, because then g can also include undefined (but different) behavior!