Mixing function for non power of 2 integer intervals - math

I'm looking for a mixing function that given an integer from an interval <0, n) returns a random-looking integer from the same interval. The interval size n will typically be a composite non power of 2 number. I need the function to be one to one. It can only use O(1) memory, O(1) time is strongly preferred. I'm not too concerned about randomness of the output, but visually it should look random enough (see next paragraph).
I want to use this function as a pixel shuffling step in a realtime-ish renderer to select the order in which pixels are rendered (The output will be displayed after a fixed time and if it's not done yet this gives me a noisy but fast partial preview). Interval size n will be the number of pixels in the render (n = 1920*1080 = 2073600 would be a typical value). The function must be one to one so that I can be sure that every pixel is rendered exactly once when finished.
I've looked at the reversible building blocks used by hash prospector, but these are mostly specific to power of 2 ranges.
The only other method I could think of is multiply by large prime, but it doesn't give particularly nice random looking outputs.
What are some other options here?

Here is one solution based on the idea of primitive roots modulo a prime:
If a is a primitive root mod p then the function g(i) = a^i % p is a permutation of the nonzero elements which are less than p. This corresponds to the Lehmer prng. If n < p, you can get a permutation of 0, ..., n-1 as follows: Given i in that range, first add 1, then repeatedly multiply by a, taking the result mod p, until you get an element which is <= n, at which point you return the result - 1.
To fill in the details, this paper contains a table which gives a series of primes (all of which are close to various powers of 2) and corresponding primitive roots which are chosen so that they yield a generator with good statistical properties. Here is a part of that table, encoded as a Python dictionary in which the keys are the primes and the primitive roots are the values:
d = {32749: 30805,
65521: 32236,
131071: 66284,
262139: 166972,
524287: 358899,
1048573: 444362,
2097143: 1372180,
4194301: 1406151,
8388593: 5169235,
16777213: 9726917,
33554393: 32544832,
67108859: 11526618,
134217689: 70391260,
268435399: 150873839,
536870909: 219118189,
1073741789: 599290962}
Given n (in a certain range -- see the paper if you need to expand that range), you can find the smallest p which works:
def find_p_a(n):
for p in sorted(d.keys()):
if n < p:
return p, d[p]
once you know n and the matching p,a the following function is a permutation of 0 ... n-1:
def f(i,n,p,a):
x = a*(i+1) % p
while x > n:
x = a*x % p
return x-1
For a quick test:
n = 2073600
p,a = find_p_a(n) # p = 2097143, a = 1372180
nums = [f(i,n,p,a) for i in range(n)]
print(len(set(nums)) == n) #prints True
The average number of multiplications in f() is p/n, which in this case is 1.011 and will never be more than 2 (or very slightly larger since the p are not exact powers of 2). In practice this method is not fundamentally different from your "multiply by a large prime" approach, but in this case the factor is chosen more carefully, and the fact that sometimes more than 1 multiplication is required adding to the apparent randomness.

Related

When have enough bits of my series with non-negative terms been calculated?

I have a power series with all terms non-negative which I want to evaluate to some arbitrarily set precision p (the length in binary digits of a MPFR floating-point mantissa). The result should be faithfully rounded. The issue is that I don't know when should I stop adding terms to the result variable, that is, how do I know when do I already have p + 32 accurate summed bits of the series? 32 is just an arbitrarily chosen small natural number meant to facilitate more accurate rounding to p binary digits.
This is my original series
0 <= h <= 1
series_orig(h) := sum(n = 0, +inf, a(n) * h^n)
But I actually need to calculate an arbitrary derivative of the above series (m is the order of the derivative):
series(h, m) := sum(n = m, +inf, a(n) * (n - m + 1) * ... * n * h^(n - m))
The rational number sequence a is defined like so:
a(n) := binomial(1/2, n)^2
= (((2*n)!/(n!)) / (n! * 4^n * (2*n - 1)))^2
So how do I know when to stop summing up terms of series?
Is the following maybe a good strategy?
compute in p * 4 (which is assumed to be greater than p + 32).
at each point be able to recall the current partial sum and the previous one.
stop looping when the previous and current partial sums are equal if rounded to precision p + 32.
round to precision p and return.
Clarification
I'm doing this with MPFI, an interval arithmetic addon to MPFR. Thus the [mpfi] tag.
Attempts to get relevant formulas and equations
Guided by Eric in the comments, I have managed to derive a formula for the required working precision and an equation for the required number of terms of the series in the sum.
A problem, however, is that a nice formula for the required number of terms is not possible.
Someone more mathematically capable might instead be able to achieve a formula for a useful upper bound, but that seems quite difficult to do for all possible requested result precisions and for all possible values of m (the order of the derivative). Note that the formulas need to be easily computable so they're ready before I start computing the series.
Another problem is that it seems necessary to assume the worst case for h (h = 1) for there to be any chance of a nice formula, but this is wasteful if h is far from the worst case, that is if h is close to zero.

Generating Integer Sequences based on a Modified Bernoulli Distribution

I want to use R to randomly generate an integer sequence that each integer is picked from a pool of integers (0,1,2,3....,k) with replacement. k is pre-determined. The selection probability for every integer k in (0,1,2,3....,k) is pk(1-p) where p is pre-determined. That is, 1 has much higher probability to be picked compared to k and my final integer sequence will likely have more 1 than k. I am not sure how to implement this number selecting process in R.
A generic approach to this type of problem would be:
Calculate the p^k * (1-p) for each integer
Create a cumulative sum of these in a table t.
Draw a number from a uniform distribution with range(t)
Measure how far into t that number falls and check which integer that corresponds to.
The larger the probability for an integer is, the larger part of that range it will cover.
Here's quick and dirty example code:
draw <- function(n=1, k, p) {
v <- seq( 0, k )
pr <- (p ** v) * (1-p)
t <- cumsum(pr)
r <- range(t)
x <- runif( n, min=min(r), max=max(r) )
f <- findInterval( x, vec=t )
v[ f+1 ] ## first interval is 0, and it will likely never pass highest interval
}
Note, the proposed solution doesn't care if your density function adds up to 1. In real life it likely will, based on your description. But that's not really important for the solution.
The answer by Sirius is good. But as I can tell, what you're describing is something like a truncated geometric distribution.
I should note that the geometric distribution is defined differently in different works (see MathWorld, for example), so we use the distribution defined as follows:
P(X = x) ~ p^x * (1 - p), where x is an integer in [0, k].
I am not very familiar with R, but the solution involves calling rgeom(1, 1 - p) until the result is k or less.
Alternatively, you can use a generic rejection sampler, since the probabilities are known (better called weights here, since they need not sum to 1). Rejection sampling is described as follows:
Assume and each weight is 0 or greater. Store the weights in a list. Calculate the highest weight, call it max. Then, to choose an integer in the interval [0, k] using rejection sampling:
Choose a uniform random integer i in the interval [0, k].
With probability weights[i]/max (where weights[i] = p^i * (1-p) in your case), return i. Otherwise, go to step 1.
Given the weights for each item, there are many other ways to make a weighted choice besides rejection sampling or the solution in Sirius's answer; see my note on weighted choice algorithms.

3 random numbers from 2 random numbers task

Suppose, you have some uniform destribution rnd(x) function what will return 0 or 1.
How you can use this function to create any rnd(x,n) function what will return uniform distributed numbers from 0 to n?
I mean everyone using it, but for me it's not so clever. For example, I can create distributions with right border 2^n-1 ([0-1],[0-3],[0-7], etc.) but can't find a way how to do this for ranges like [0-2] or [0-5] without using very big numbers for reasonable precision.
Suppose that you need to create function rnd(n) which returns uniformly distributed random number in range [0, n] by using another function rnd1() which returns 0 or 1.
Find such smallest k that 2^k >= n+1
Create number consisting of k bits and fill all its bits by using rnd1(). Result is uniformly distributed number in range [0, 2^k-1]
Compare generated number to n. If it is smaller or equal to n, return it. Otherwise go to step 2.
In general, this is a variation of how to generate uniform numbers in small range by using library function which generates numbers in large range:
unsigned int rnd(n) {
while (true) {
unsigned int x = rnd_full_unsigned_int();
if (x < MAX_UNSIGNED_INT / (n+1) * (n+1)) {
return x % (n+1);
}
}
}
Explanation for above code. If you simply return rnd_full_unsigned_int() % (n+1) then this will generate bias towards small valued numbers. Black spiral represents all possible values from 0 to MAX_UNSIGNED_INT, counted from inside. Length of single revolution path is (n+1). Red line shows why bias occurs. So, in order to remove this bias we first create random number x in range [0, MAX_UNSIGNED_INT] (this is easy with bit-fill). Then, if x falls into bias-generating region, we recreate it. We keep recreating it until it doesn't fall into bias-generating region. x at this moment is in form a*(n+1)-1, so x % (n+1) is a uniformly distributed number [0, n].

How to calculate n log n = c

I have a homework problem for my algorithms class asking me to calculate the maximum size of a problem that can be solved in a given number of operations using an O(n log n) algorithm (ie: n log n = c). I was able to get an answer by approximating, but is there a clean way to get an exact answer?
There is no closed-form formula for this equation. Basically, you can transform the equation:
n log n = c
log(n^n) = c
n^n = exp(c)
Then, this equation has a solution of the form:
n = exp(W(c))
where W is Lambert W function (see especially "Example 2"). It was proved that W cannot be expressed using elementary operations.
However, f(n)=n*log(n) is a monotonic function. You can simply use bisection (here in python):
import math
def nlogn(c):
lower = 0.0
upper = 10e10
while True:
middle = (lower+upper)/2
if lower == middle or middle == upper:
return middle
if middle*math.log(middle, 2) > c:
upper = middle
else:
lower = middle
the O notation only gives you the biggest term in the equation. Ie the performance of your O(n log n ) algorithm could actually be better represented by c = (n log n) + n + 53.
This means that without knowing the exact nature of the performance of your algorithm you wouldn't be able to calculate the exact number of operations required to process an given amount of data.
But it is possible to calculate that the maximum number of operations required to process a data set of size n is more than a certain number, or conversely that the biggest problem set that can be solved, using that algorithm and that number of operations, is smaller than a certain number.
The O notation is useful for comparing 2 algorithms, ie an O(n^2) algorithm is faster than a O(n^3) algorithm etc.
see Wikipedia for more info.
some help with logs

What is O value for naive random selection from finite set?

This question on getting random values from a finite set got me thinking...
It's fairly common for people to want to retrieve X unique values from a set of Y values. For example, I may want to deal a hand from a deck of cards. I want 5 cards, and I want them to all be unique.
Now, I can do this naively, by picking a random card 5 times, and try again each time I get a duplicate, until I get 5 cards. This isn't so great, however, for large numbers of values from large sets. If I wanted 999,999 values from a set of 1,000,000, for instance, this method gets very bad.
The question is: how bad? I'm looking for someone to explain an O() value. Getting the xth number will take y attempts...but how many? I know how to figure this out for any given value, but is there a straightforward way to generalize this for the whole series and get an O() value?
(The question is not: "how can I improve this?" because it's relatively easy to fix, and I'm sure it's been covered many times elsewhere.)
Variables
n = the total amount of items in the set
m = the amount of unique values that are to be retrieved from the set of n items
d(i) = the expected amount of tries needed to achieve a value in step i
i = denotes one specific step. i ∈ [0, n-1]
T(m,n) = expected total amount of tries for selecting m unique items from a set of n items using the naive algorithm
Reasoning
The first step, i=0, is trivial. No matter which value we choose, we get a unique one at the first attempt. Hence:
d(0) = 1
In the second step, i=1, we at least need 1 try (the try where we pick a valid unique value). On top of this, there is a chance that we choose the wrong value. This chance is (amount of previously picked items)/(total amount of items). In this case 1/n. In the case where we picked the wrong item, there is a 1/n chance we may pick the wrong item again. Multiplying this by 1/n, since that is the combined probability that we pick wrong both times, gives (1/n)2. To understand this, it is helpful to draw a decision tree. Having picked a non-unique item twice, there is a probability that we will do it again. This results in the addition of (1/n)3 to the total expected amounts of tries in step i=1. Each time we pick the wrong number, there is a chance we might pick the wrong number again. This results in:
d(1) = 1 + 1/n + (1/n)2 + (1/n)3 + (1/n)4 + ...
Similarly, in the general i:th step, the chance to pick the wrong item in one choice is i/n, resulting in:
d(i) = 1 + i/n + (i/n)2 + (i/n)3 + (i/n)4 + ... = = sum( (i/n)k ), where k ∈ [0,∞]
This is a geometric sequence and hence it is easy to compute it's sum:
d(i) = (1 - i/n)-1
The overall complexity is then computed by summing the expected amount of tries in each step:
T(m,n) = sum ( d(i) ), where i ∈ [0,m-1] = = 1 + (1 - 1/n)-1 + (1 - 2/n)-1 + (1 - 3/n)-1 + ... + (1 - (m-1)/n)-1
Extending the fractions in the series above by n, we get:
T(m,n) = n/n + n/(n-1) + n/(n-2) + n/(n-3) + ... + n/(n-m+2) + n/(n-m+1)
We can use the fact that:
n/n ≤ n/(n-1) ≤ n/(n-2) ≤ n/(n-3) ≤ ... ≤ n/(n-m+2) ≤ n/(n-m+1)
Since the series has m terms, and each term satisfies the inequality above, we get:
T(m,n) ≤ n/(n-m+1) + n/(n-m+1) + n/(n-m+1) + n/(n-m+1) + ... + n/(n-m+1) + n/(n-m+1) = = m*n/(n-m+1)
It might be(and probably is) possible to establish a slightly stricter upper bound by using some technique to evaluate the series instead of bounding by the rough method of (amount of terms) * (biggest term)
Conclusion
This would mean that the Big-O order is O(m*n/(n-m+1)). I see no possible way to simplify this expression from the way it is.
Looking back at the result to check if it makes sense, we see that, if n is constant, and m gets closer and closer to n, the results will quickly increase, since the denominator gets very small. This is what we'd expect, if we for example consider the example given in the question about selecting "999,999 values from a set of 1,000,000". If we instead let m be constant and n grow really, really large, the complexity will converge towards O(m) in the limit n → ∞. This is also what we'd expect, since while chosing a constant number of items from a "close to" infinitely sized set the probability of choosing a previously chosen value is basically 0. I.e. We need m tries independently of n since there are no collisions.
If you already have chosen i values then the probability that you pick a new one from a set of y values is
(y-i)/y.
Hence the expected number of trials to get (i+1)-th element is
y/(y-i).
Thus the expected number of trials to choose x unique element is the sum
y/y + y/(y-1) + ... + y/(y-x+1)
This can be expressed using harmonic numbers as
y (Hy - Hy-x).
From the wikipedia page you get the approximation
Hx = ln(x) + gamma + O(1/x)
Hence the number of necessary trials to pick x unique elements from a set of y elements
is
y (ln(y) - ln(y-x)) + O(y/(y-x)).
If you need then you can get a more precise approximation by using a more precise approximation for Hx. In particular, when x is small it is possible to
improve the result a lot.
If you're willing to make the assumption that your random number generator will always find a unique value before cycling back to a previously seen value for a given draw, this algorithm is O(m^2), where m is the number of unique values you are drawing.
So, if you are drawing m values from a set of n values, the 1st value will require you to draw at most 1 to get a unique value. The 2nd requires at most 2 (you see the 1st value, then a unique value), the 3rd 3, ... the mth m. Hence in total you require 1 + 2 + 3 + ... + m = [m*(m+1)]/2 = (m^2 + m)/2 draws. This is O(m^2).
Without this assumption, I'm not sure how you can even guarantee the algorithm will complete. It's quite possible (especially with a pseudo-random number generator which may have a cycle), that you will keep seeing the same values over and over and never get to another unique value.
==EDIT==
For the average case:
On your first draw, you will make exactly 1 draw.
On your 2nd draw, you expect to make 1 (the successful draw) + 1/n (the "partial" draw which represents your chance of drawing a repeat)
On your 3rd draw, you expect to make 1 (the successful draw) + 2/n (the "partial" draw...)
...
On your mth draw, you expect to make 1 + (m-1)/n draws.
Thus, you will make 1 + (1 + 1/n) + (1 + 2/n) + ... + (1 + (m-1)/n) draws altogether in the average case.
This equals the sum from i=0 to (m-1) of [1 + i/n]. Let's denote that sum(1 + i/n, i, 0, m-1).
Then:
sum(1 + i/n, i, 0, m-1) = sum(1, i, 0, m-1) + sum(i/n, i, 0, m-1)
= m + sum(i/n, i, 0, m-1)
= m + (1/n) * sum(i, i, 0, m-1)
= m + (1/n)*[(m-1)*m]/2
= (m^2)/(2n) - (m)/(2n) + m
We drop the low order terms and the constants, and we get that this is O(m^2/n), where m is the number to be drawn and n is the size of the list.
There's a beautiful O(n) algorithm for this. It goes as follows. Say you have n items, from which you want to pick m items. I assume the function rand() yields a random real number between 0 and 1. Here's the algorithm:
items_left=n
items_left_to_pick=m
for j=1,...,n
if rand()<=(items_left_to_pick/items_left)
Pick item j
items_left_to_pick=items_left_to_pick-1
end
items_left=items_left-1
end
It can be proved that this algorithm does indeed pick each subset of m items with equal probability, though the proof is non-obvious. Unfortunately, I don't have a reference handy at the moment.
Edit The advantage of this algorithm is that it takes only O(m) memory (assuming the items are simply integers or can be generated on-the-fly) compared to doing a shuffle, which takes O(n) memory.
Your actual question is actually a lot more interesting than what I answered (and harder). I've never been any good at statistitcs (and it's been a while since I did any), but intuitively, I'd say that the run-time complexity of that algorithm would probably something like an exponential. As long as the number of elements picked is small enough compared to the size of the array the collision-rate will be so small that it will be close to linear time, but at some point the number of collisions will probably grow fast and the run-time will go down the drain.
If you want to prove this, I think you'd have to do something moderately clever with the expected number of collisions in function of the wanted number of elements. It might be possible do to by induction as well, but I think going by that route would require more cleverness than the first alternative.
EDIT: After giving it some thought, here's my attempt:
Given an array of m elements, and looking for n random and different elements. It is then easy to see that when we want to pick the ith element, the odds of picking an element we've already visited are (i-1)/m. This is then the expected number of collisions for that particular pick. For picking n elements, the expected number of collisions will be the sum of the number of expected collisions for each pick. We plug this into Wolfram Alpha (sum (i-1)/m, i=1 to n) and we get the answer (n**2 - n)/2m. The average number of picks for our naive algorithm is then n + (n**2 - n)/2m.
Unless my memory fails me completely (which entirely possible, actually), this gives an average-case run-time O(n**2).
The worst case for this algorithm is clearly when you're choosing the full set of N items. This is equivalent to asking: On average, how many times must I roll an N-sided die before each side has come up at least once?
Answer: N * HN, where HN is the Nth harmonic number,
a value famously approximated by log(N).
This means the algorithm in question is N log N.
As a fun example, if you roll an ordinary 6-sided die until you see one of each number, it will take on average 6 H6 = 14.7 rolls.
Before being able to answer this question in details, lets define the framework. Suppose you have a collection {a1, a2, ..., an} of n distinct objects, and want to pick m distinct objects from this set, such that the probability of a given object aj appearing in the result is equal for all objects.
If you have already picked k items, and radomly pick an item from the full set {a1, a2, ..., an}, the probability that the item has not been picked before is (n-k)/n. This means that the number of samples you have to take before you get a new object is (assuming independence of random sampling) geometric with parameter (n-k)/n. Thus the expected number of samples to obtain one extra item is n/(n-k), which is close to 1 if k is small compared to n.
Concluding, if you need m unique objects, randomly selected, this algorithm gives you
n/n + n/(n-1) + n/(n-2) + n/(n-3) + .... + n/(n-(m-1))
which, as Alderath showed, can be estimated by
m*n / (n-m+1).
You can see a little bit more from this formula:
* The expected number of samples to obtain a new unique element increases as the number of already chosen objects increases (which sounds logical).
* You can expect really long computation times when m is close to n, especially if n is large.
In order to obtain m unique members from the set, use a variant of David Knuth's algorithm for obtaining a random permutation. Here, I'll assume that the n objects are stored in an array.
for i = 1..m
k = randInt(i, n)
exchange(i, k)
end
here, randInt samples an integer from {i, i+1, ... n}, and exchange flips two members of the array. You only need to shuffle m times, so the computation time is O(m), whereas the memory is O(n) (although you can adapt it to only save the entries such that a[i] <> i, which would give you O(m) on both time and memory, but with higher constants).
Most people forget that looking up, if the number has already run, also takes a while.
The number of tries nessesary can, as descriped earlier, be evaluated from:
T(n,m) = n(H(n)-H(n-m)) ⪅ n(ln(n)-ln(n-m))
which goes to n*ln(n) for interesting values of m
However, for each of these 'tries' you will have to do a lookup. This might be a simple O(n) runthrough, or something like a binary tree. This will give you a total performance of n^2*ln(n) or n*ln(n)^2.
For smaller values of m (m < n/2), you can do a very good approximation for T(n,m) using the HA-inequation, yielding the formula:
2*m*n/(2*n-m+1)
As m goes to n, this gives a lower bound of O(n) tries and performance O(n^2) or O(n*ln(n)).
All the results are however far better, that I would ever have expected, which shows that the algorithm might actually be just fine in many non critical cases, where you can accept occasional longer running times (when you are unlucky).

Resources