Shiny: Plotting a graph whose name contains an interactive input value - r

In ShinyApp, I want to plot a graph whose name has an interactive input value. So in the ui.R side, the user chooses an input value from 0, 1 or 2. And in the server.R side, I want the App to plot a graph whose name is either pl0, pl1 or pl2. That is to say, if the user chooses 0 as an input value, the App plots a graph pl0, so does the same for pl1 for input 1, and for pl2 and input 2. I am using plotly library for plotting graphs.
I have tried print(), plot(), return(), but neither of them worked.
Any solution or advice would be appreciated. Thank you very much!
Here is my ui.R
library(shiny)
shinyUI(fluidPage(
# Application title
titlePanel("Star Cluster Simulations"),
# Sidebar with a slider input for time
sidebarLayout(
sidebarPanel(
sliderInput(inputId = "time",
label = "Select time to display a snapshot",
min = 0,
max = 2,
value = 0)
),
# Show a plot of the generated distribution
mainPanel(
plotlyOutput("distPlot")
)
)
))
And here is my server.R
library(shiny)
library(plotly)
# load data
for(i in 0:2) {
infile <- paste0("Data/c_0", i, "00.csv")
a <- read.csv(infile)
b <- assign(paste0("c_0", i, "00"), a)
names(a) <- paste0("c_0", i, "00")
pl <- plot_ly(b, x = ~x, y = ~y, z = ~z, color = ~id) %>%
add_markers() %>%
layout(scene = list(xaxis = list(title = 'x'),
yaxis = list(title = 'y'),
zaxis = list(title = 'z')))
assign(paste0("pl", i), pl)
}
# shinyServer
shinyServer(function(input, output) {
output$distPlot <- renderPlotly({
# this doesn't work
print(paste0("pl", input$time))
})
})

I can't test this since your question isn't reproducible (i.e. doesn't include data), but one way to switch between text values (i.e. the values returned from Shiny inputs) and R objects is by making a reactive expression that uses the switch function. You can call the reactive expression (in the case below, plot.data()) inside renderPlotly (or any other render function) to switch between datasets.
shinyServer(function(input, output) {
plot.data <- reactive({
switch(paste0("pl", input$time),
"pl0" = pl0,
"pl1" = pl1,
"pl2" = pl2)
})
output$distPlot <- renderPlotly({
plot.data()
})
})

Related

How to create a clickable histogram in Shiny?

I want to create a clickable histogram in shiny but I don't know if it is possible.
Some months ago I saw a clickable volcano plot which gives you a table of what you click.
Source: https://2-bitbio.com/2017/12/clickable-volcano-plots-in-shiny.html
The closest post that I found about creating clickable histograms is this one Click to get coordinates from multiple histogram in shiny
However, I don't want to get the coordinates. I want the rownames of the dataframe.
Having this dataframe, can I get the rownames everytime I click a bar from the histogram?
mtcars <- mtcars %>%
select("hp")
mtcars <- as.matrix(mtcars)
One example (but not clickable) in shiny:
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
),
mainPanel(
plotOutput("hist"),
)
)
)
mtcars <- mtcars %>%
select("hp")
mtcars <- as.matrix(mtcars)
server <- function(input, output) {
output$hist <- renderPlot({
pp <- qplot(mtcars, geom = "histogram", bins = 10, xlab="values",
ylab="Frequency", main="Histogram",
fill=I("red"), col=I("black"), alpha=I(0.4))
pp + scale_x_continuous(breaks=pretty(mtcars, n=10))
})
}
shinyApp(ui = ui, server = server)
Does anyone know how to do it?
Thanks very much in advance!
Regards
This is a great question, and what makes it challenging is that the qplot/ggplot charts are static images. The below app.r is an example of how I would do it. I'd love to see other approaches.
In essence:
Create a sequence of numbers that will be used both as the breaks in your histogram and as intervals in your dataframe. I based these on user inputs, but you could hardcode them.
Assign a "bin" value to each row in the dataframe based on the interval in which the value falls.
Record the x-coordinate from the user's click event and assign that a "bin" value based on the same set of intervals.
Subset your dataframe and retain only those records where the "bin" value of the data matches the "bin" value of the x-coordinate from the user's click event.
Otherwise, if you're willing to go the d3 route, you could explore something like this posted by R Views.
#Load libraries ----------------------------------------------------
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
# Prepare data -----------------------------------------------------
df <- mtcars
df <- cbind(model = rownames(df), data.frame(df, row.names = NULL)) # setting the rownames as the first column
dm <- df$hp %>% as.matrix()
# UI function ------------------------------------------------------
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
tags$h5("I added the below text output only to demonstrate shiny's way for tracking user interaction on static plots. You can click, double-click, or click & drag (i.e. brushing). These functions are AWESOME when exploring scatterplots."),
tags$h3("Chart click and brushing"),
verbatimTextOutput("info"),
tags$h5("Now I'm applying the below UI inputs to the `vec` and `breaks` arguments in `findInterval()` and `qplot()` respectively; I'm using `findInterval()` to bin the values in the dataframe AND to bin the x-value of the user's click event input on the chart. Then we can return the dataframe rows with the same bin values as the x-value of the click input."),
sliderInput("seq_from_to"
, label = h3("Sequence 'From' and 'To'")
, min = 0
, max = 500
, value = c(50, 350)
),
sliderInput("seq_by"
, label = h3("Sequence 'By'")
, min = 25
, max = 200
, value = 50
, step = 5)
),
mainPanel(
plotOutput("hist",
click = "plot_click",
dblclick = "plot_dblclick",
hover = "plot_hover",
brush = "plot_brush"),
dataTableOutput("table")
)
)
)
# Server function --------------------------------------------------
server <- function(input, output) {
# Render Histogram Plot
output$hist <- renderPlot({
# Using the same `qplot` function but inserting the user inputs to set the breaks values in the plot
pp <- qplot(dm
, geom = "histogram"
, breaks = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by)
, xlab = "values"
, ylab = "Frequency"
, main = "Histogram"
, fill = I("red")
, col = I("black")
, alpha = I(0.4)
)
# Also using the user inputs to set the breaks values for the x-axis
pp + scale_x_continuous(breaks = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
})
# This is purely explanatory to help show how shiny can read user interaction on qplot/ggplot objects
# It's taken from the Shiny docs here: https://shiny.rstudio.com/articles/plot-interaction.html
output$info <- renderText({
# Retain the x and y coords of the user click event data
xy_str <- function(e) {
if(is.null(e)) return("NULL\n")
paste0("x=", round(e$x, 1), " y=", round(e$y, 1), "\n")
}
# Retain the x and y range coords of click & drag (brush) data
xy_range_str <- function(e) {
if(is.null(e)) return("NULL\n")
paste0("xmin=", round(e$xmin, 1), " xmax=", round(e$xmax, 1),
" ymin=", round(e$ymin, 1), " ymax=", round(e$ymax, 1))
}
# Paste this together so we can read it in the UI function for demo purposes
paste0(
"click: ", xy_str(input$plot_click),
"dblclick: ", xy_str(input$plot_dblclick),
"hover: ", xy_str(input$plot_hover),
"brush: ", xy_range_str(input$plot_brush)
)
})
# Back to the story. Set a listener to trigger when one of the following is updated:
toListen <- reactive({list(
input$plot_click # user clicks on the plot
, input$seq_from_to # user updates the range slider
, input$seq_by # user updates the number input
)
})
# When one of those events are triggered, update the datatable output
observeEvent(toListen(), {
# Save the user click event data
click_data <- input$plot_click
print(click_data) # during your app preview, you can watch the R Console to see what click data is accessible
# Assign bin values to each row using the intervals that are set by the user input
df$bin <- findInterval(dm, vec = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
# Similarly assign a bin value to the click event based on what interval the x values falls within
click_data$x_bin <- findInterval(click_data$x, vec = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
# Lastly, subset the df to only those records within the same interval as the click event x-value
df_results <- subset(df, bin == click_data$x_bin)
# Select what values to view in the table
df_results <- df_results %>% select(model, hp)
# And push these back out to the UI
output$table <- renderDataTable(df_results,
options = list(
pageLength = 5
)
)
})
}
shinyApp(ui = ui, server = server)
Well, someone answered. Since I took the time to put it together, here is another potential solution.
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
library(DescTools) # added for Closest()
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
),
mainPanel(
plotOutput("hist", click = 'plot_click'), # added plot_click
verbatimTextOutput("x_value"), # added queues for interactivity
verbatimTextOutput("selected_rows") # added table for bin values
)
)
)
# this can be a dataframe or matrix for qplot or ggplot
# (not sure if there was another reason you had this code?)
# mtcars <- mtcars %>%
# select("hp") # if you only want hp
# mtcars <- as.matrix(mtcars) # I suggest making row names a column
# to keep 2 columns
pp <- ggplot(mtcars) +
geom_histogram(aes(x = hp),
bins = 10,
fill = "red",
color = "black",
alpha = .4) +
labs(x = "values",
y = "Frequency",
title = "Histogram")
# extract data from plot to find where each value falls within the histogram bins
# I kept the pkg name, function in more than one library
bd <- ggplot_build(ggplot2::last_plot())$data[[1]]
# add the assigned bin number to the mtcars frame; used for filtering matches
mtcars$bins <- lapply(mtcars$hp,
function(y) {
which(bd$x == Closest(bd$x, y))
}) %>% unlist()
server <- function(input, output) {
output$hist <- renderPlot({
# moved the plot outside of server, so that global variables could be created
# pp <- qplot(mtcars[,"hp"], geom = "histogram", bins = 10, xlab="values",
# ylab = "Frequency", main = "Histogram",
# fill = I("red"), col = I("black"), alpha = I(0.4))
# scale_x_continuous(breaks=pretty(mtcars, n=10)) # can't use this
pp
})
# # Print the name of the x value # added all that's below with server()
output$x_value <- renderPrint({
if (is.null(input$plot_click$x)) return()
# find the closest bin center to show where the user clicked on the histogram
cBin <- which(bd$x == Closest(bd$x, input$plot_click$x))
paste0("You selected bin ", cBin) # print out selected value based on bin center
})
# Print the rows of the data frame which match the x value
output$selected_rows <- renderPrint({
if (is.null(input$plot_click$x)) return()
# find the closest bin center to show where the user clicked on the histogram
cBin <- which(bd$x == Closest(bd$x, input$plot_click$x))
mtcars %>% filter(bins == cBin)
# mtcars
})
}
shinyApp(ui = ui, server = server)
Just in case someone ends in this post looking a way to include brushedPoints... inspired on this post, I found a way to do it!
Code:
#Load libraries ----------------------------------------------------
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
# Prepare data -----------------------------------------------------
df <- mtcars
df <- cbind(model = rownames(df), data.frame(df, row.names = NULL)) # setting the rownames as the first column
breaks_data = pretty(mtcars$hp, n=10)
my_breaks = seq(min(breaks_data), to=max(breaks_data), by=30)
# UI function ------------------------------------------------------
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
actionButton("draw_plot", "Draw the plot")
),
mainPanel(
plotOutput("hist",
brush = brushOpts("plot_brush", resetOnNew = T, direction = "x")),
dataTableOutput("table"),
)
)
)
# Server function --------------------------------------------------
server <- function(input, output) {
observeEvent(input$plot_brush, {
info_plot <- brushedPoints(df, input$plot_brush)
output$table <- renderDataTable(info_plot)
})
# If the user didn't choose to see the plot, it won't appear.
output$hist <- renderPlot({
df %>% ggplot(aes(hp)) +
geom_histogram(alpha=I(0.4), col = I("black"), fill = I("red"), bins=10) +
labs(x = "values",
y = "Frequency",
title = "Histogram") +
scale_x_continuous(breaks = my_breaks)
})
}
shinyApp(ui = ui, server = server)
How to do a scatterplot with hover
library(shiny)
library(tidyverse)
ui <- fluidPage(
titlePanel("hover tooltips demo"),
mainPanel(
plotOutput("plot1", hover = hoverOpts(id = "plot_hover", delay = 100, delayType = "debounce")),
uiOutput("hover_info") # , style = "pointer-events: none")
)
)
server <- function(input, output) {
output$plot1 <- renderPlot({
mtcars %>%
ggplot(aes(mpg, hp)) +
geom_point()
})
output$hover_info <- renderUI({
hover <- input$plot_hover
point <- shiny::nearPoints(mtcars,
coordinfo = hover,
xvar = 'mpg',
yvar = 'hp',
threshold = 20,
maxpoints = 1,
addDist = TRUE)
if (nrow(point) == 0) return(NULL)
style <- paste0("position:absolute; z-index:100; background-color: #3c8dbc; color: #ffffff;",
"font-weight: normal; font-size: 11pt;",
"left:", hover$coords_css$x + 5, "px;",
"top:", hover$coords_css$y + 5, "px;")
wellPanel(
style = style,
p(HTML(paste0("Some info about car: <br/>MPG ", point$mpg, "<br/>HP ", point$hp)))
)
})
}
shinyApp(ui = ui, server = server)

How to retain the curves after plotting in R Shiny?

I am building a Shiny app, where the user can add different curves to the plot, but I can't make the plot to retain the already added curves. How can I make that happen?
In the simplified reproducible code below are altogether 8 curve possibilities, based on 3 radiobuttons selections which have 2 options each. I would like to keep these as radiobuttons and not use checkboxes, as in my real app that I am working on there will be about 300 combinations that would be too confusing to use with checkboxes. Please see the code below:
library(shiny)
library(plotly)
library(dplyr)
data111 <-data.frame("x"=1:10, "y"=c(99,98,97,96,95,94,93,92,91,90))
data112 <-data.frame("x"=5:14, "y"=c(79,78,77,76,75,74,73,72,71,70))
data121 <-data.frame("x"=9:18, "y"=c(59,58,57,56,55,54,53,52,51,50))
data122 <-data.frame("x"=3:12, "y"=c(49,48,47,46,45,44,43,42,41,40))
data211 <-data.frame("x"=7:16, "y"=c(29,28,27,26,25,24,23,22,21,20))
data212 <-data.frame("x"=11:20, "y"=c(19,18,17,16,15,14,13,12,11,10))
data221 <-data.frame("x"=2:11, "y"=c(95,94,93,92,91,90,89,88,87,86))
data222 <-data.frame("x"=1:10, "y"=c(45,44,43,42,41,40,39,38,37,36))
ui <- fluidPage(
titlePanel("Curve selection"),
sidebarLayout(
sidebarPanel(
radioButtons(inputId = "option",
label="Choose the option",
choices=c("option1"=1,
"option2"=2),
selected = 1),
radioButtons(inputId = "type",
label="Choose the type",
choices=c("type1"=1,
"type2"=2),
selected = 1),
radioButtons(inputId = "group",
label="Choose the group",
choices=c("group1"=1,
"group2"=2),
selected = 1),
actionButton("add","Add curve to the plot")
),
mainPanel(
plotlyOutput("plot")
)
)
)
server <- function(input, output) {
data <- eventReactive(input$add,{
get(paste0("data",input$option,input$type, input$group))
})
output$plot <- renderPlotly({
data <- data()
p <-plot_ly(type = "scatter", mode="lines")
p<-add_data(p, data) %>% add_trace(p, x= ~x, y = ~y)
p
})
}
shinyApp(ui = ui, server = server)
I expect that the user can choose the option, type and group in the radiobutton selections, then add the curve. After that, make a new selection of option, type and group and add the new curve to the already existing one in the plot. The user should be able to do this several times. Do you know how this can be achived?
Thanks!
You will have to use a reactiveValues object, in which you save already added traces.
Then you can use add_trace with a for loop for example:
I changed your eventReactive to an observeEvent, which appends the new data to the reactiveValues list.
To prevent plotting the same object twice, I created a reactiveValues usedData object, which will save the plot legend names. If the name is already at hand, nothing will be added to the plot.
server <- function(input, output) {
d <- reactiveValues(a=NULL, name=NULL)
usedData <- reactiveValues(d = NULL)
data <- observeEvent(input$add,{
src = paste0("data",input$option,input$type, input$group)
var <- get(src)
if (src %in% usedData$d) {
print("Data is already plotted")
req(F)
}
if (is.null(d$a)) {
d$a <- list(var)
d$name = list(src)
usedData$d <- src
} else {
d$a <- append(d$a, list(var))
d$name = append(d$name, list(src))
usedData$d <- append(usedData$d, src)
}
})
output$plot <- renderPlotly({
req(d$a)
data <- d$a
names = d$name
p <- plot_ly(data = data[[1]], type = "scatter", mode="lines")
if (length(data) == 1) {
p <- add_trace(p, x= ~x, y = ~y, name = names)
} else {
for (i in 1:length(data)) {
d <- data[[i]]
p <- add_trace(p, data = d, x= ~x, y = ~y, type = "scatter", mode="lines", name = names[[i]])
}
}
p
})
}

Lists containing reactive items not fully generating in shiny

I fixed a bug, but I do not understand why it happened in the first place. Can anyone help clarify?
I am building an interactive data explorer app, with each figure contained in its own module. Under my first approach ("old version that does not work") I first build a look-up list and then use it to display the correct control and plot.
However, no plot is displayed until you have clicked on all the options in the figure selection list.
I fixed this by switching to the "new version that works" without an intermediate look-up list. But do not understand why this happened.
Minimal reproducible example below, sorry about the length.
# required packages
library(shiny)
library(tidyverse)
## ui ----
ui = fluidPage(
sidebarLayout(
sidebarPanel(
uiOutput("plot_controls"),
width=3
),
mainPanel(
selectInput("selected_plot", "Select figure:", choices = c("Histogram", "Scatter")),
plotOutput("plot_plot", height = "700px"),
width=9
)))
## server ----
server = function(input, output, session) {
data(starwars)
### modules ----
fig_histogram = callModule(figure_histogram_plot, "histogram", datafile = starwars)
fig_scatter = callModule(figure_Scatter_Plot, "scatter", datafile = starwars)
module_list = list( fig_histogram, fig_scatter )
### old version that does not work ----
resource.map_text_to_plot = reactive({
map = list("Histogram" = module_list[[1]]$plot(), "Scatter" = module_list[[2]]$plot())
})
output$plot_plot = renderPlot({ resource.map_text_to_plot()[input$selected_plot] })
resource.map_text_to_control = reactive({
map = list("Histogram" = module_list[[1]]$control, "Scatter" = module_list[[2]]$control)
})
output$plot_controls = renderUI({ resource.map_text_to_control()[input$selected_plot] })
### new version that works ----
# output$plot_controls = renderUI({
# for(module in module_list)
# if(module$text == input$selected_plot)
# return(module$control)
# })
#
# output$plot_plot = renderPlot({
# for(module in module_list)
# if(module$text == input$selected_plot)
# return(module$plot())
# })
}
shinyApp(ui = ui, server = server)
The figure modules are as follows:
### histogram - server ----
figure_histogram_plot = function(input, output, session, datafile){
text = "Histogram"
control = sliderInput(session$ns("num_bins"), "Number of bins", min = 5, max = 50, value = 30)
plot = reactive({
p = ggplot(data = datafile) + geom_histogram(aes_string(x = "height"), bins = input$num_bins)
return(p)
})
return(list(text = text, plot = plot, control = control))
}
### scatter - server ----
figure_Scatter_Plot = function(input, output, session, datafile){
text = "Scatter"
control = radioButtons(session$ns("plot_design"), "Plot design", choices = c("points", "lines", "both"))
plot = reactive({
p = ggplot(data = datafile)
if(input$plot_design != "lines")
p = p + geom_point(aes_string( x = "mass", y = "height" ))
if(input$plot_design != "points")
p = p + geom_line(aes_string( x = "mass", y = "height" ))
return(p)
})
return(list(text = text, plot = plot, control = control))
}
So I think the problem is when exactly you are evaluating the reactive element. When you use () to "call" a reactive element, it's not really reactive any more. When you set up the list, use
resource.map_text_to_plot = reactive({
map = list("Histogram" = module_list[[1]]$plot,
"Scatter" = module_list[[2]]$plot)
map
})
and when you set up the renderPlot, use
output$plot_plot = renderPlot({
resource.map_text_to_plot()[[input$selected_plot]]() })
Note we removed the () from the list, and put it in the render function instead.
Also, your controls aren't being initialized before the first plot is drawn, so the input$plot_design value can be NULL and you don't seem to check for that which causes a problem at the first draw (you will briefly see an error most likely)

R Shiny: Create a button that updates a data.frame

I have a randomly generated data.frame. The user can modify a slider to choose the number of points. Then I plot this data.frame.
I want to add a button than when clicked, it performs a modification in the previous randomly generated data.frame (but without regenerating the data.frame). The modification is a voronoid relaxation, and it should be performed once per each time the button is clicked and the graph generated.
Until now, I have not achieved anything similar...
ui.R
library(shiny)
# Define UI for application that draws a histogram
shinyUI(fluidPage(
# Application title
titlePanel("Map Generator:"),
# Sidebar with a slider input for the number of bins
sidebarLayout(
sidebarPanel(
p("Select the power p to generate 2^p points."),
sliderInput("NumPoints",
"Number of points:",
min = 1,
max = 10,
value = 9),
actionButton("GenPoints", "Generate"),
actionButton("LloydAlg", "Relaxe")
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot",height = 700, width = "auto")
)
)
))
server.R
library(shiny)
library(deldir)
shinyServer(function(input, output) {
observeEvent(input$NumPoints,{
x = data.frame(X = runif(2^input$NumPoints,1,1E6),
Y = runif(2^input$NumPoints,1,1E6))
observeEvent(input$LloydAlg, {
x = tile.centroids(tile.list(deldir(x)))
})
output$distPlot <- renderPlot({
plot(x,pch = 20,asp=1,xlim=c(0,1E6),ylim = c(0,1E6))
})
})
})
Of course there is something that I must be doing wrong, but I am quite new into shiny I can't figure it out what I am doing wrong...
This should work (even though I am pretty sure this could be improved):
shinyServer(function(input, output) {
library(deldir)
data = data.frame(
X = runif(2^9, 1, 1E6),
Y = runif(2^9, 1, 1E6)
)
rv <- reactiveValues(x = data)
observeEvent(input$GenPoints, {
rv$x <- data.frame(
X = runif(2^input$NumPoints,1,1E6),
Y = runif(2^input$NumPoints,1,1E6)
)
})
observeEvent(input$LloydAlg, {
rv$x = tile.centroids(tile.list(deldir(rv$x)))
})
output$distPlot <- renderPlot({
plot(rv$x,pch = 20,asp=1,xlim=c(0,1E6),ylim = c(0,1E6))
})
})
So first I initialize the points to plot. I use runif(2^9, 1, 1E6) because the starting value of the sliderInput is 9 all the time.
I also removed the observeEvent from the sliderInput and moved it to the GenPoints actionButton.

R Shiny to select traces for Plotly line chart?

I am trying to use Shiny to select variables I want to plot in a multi-line chart rendered using Plotly. I have many variables so I want to select using Shiny instead of using Plotly's interactive legend "click" selection mechanism.
Example Data:
library(plotly)
# Example dataframe
foo <-data.frame( mon = c("Jan", "Feb", "Mar"),
var_1 = c(100, 200, 300),
var_b = c(80, 250, 280),
var_three = c(150, 120,201)
)
When using Plotly directly I can manually add traces using code like this:
p <- plot_ly(x = foo$mon, y = foo$var_1, line = list(shape="linear"))
p <- add_trace(p, x = foo$mon, y = foo$var_b)
p <- add_trace(p, x = foo$mon, y = foo$var_three)
print(p)
Now I want to use a Shiny checkbox to select the variables I wish to see on the plot. The selection is captured in input$show_vars , but how do I loop through and plot this changing list of variables? Here is my app.R code that manually plots one of the variables. Suggestions appreciated!
#------------------------------------------------------------------------------
# UI
#------------------------------------------------------------------------------
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
checkboxGroupInput('show_vars', 'Columns in the dataset', names(foo),
selected = c('mon', 'var_1')),
helpText('Select the variables to show in the graph.')
),
mainPanel(
plotlyOutput("myPlot")
)
)
)
#------------------------------------------------------------------------------
# SERVER
# Need to loop through input$show_vars to show a trace for each one?
#------------------------------------------------------------------------------
server <- function(input, output) {
# a large table, reative to input$show_vars
output$uteTable = renderDataTable({
library(ggplot2)
ute[, input$show_vars, drop = FALSE]
})
output$myPlot = renderPlotly({
plot_ly(x=foo$mon, y=foo$var_1, line = list(shape="linear"))
## How to add the other traces selected in input$show_vars??
})
}
shinyApp(ui = ui, server = server)
UPDATE: I realize now that I need the script to avoid hard-coding the first plot to use foo$var_1. The plot should use any one of the possible selections in the checkboxes (minus $mon, which I have removed from the select list). When I try to make the first plot statement conditional I get the message "Error: The last plot does not exist." ie, this does not work:
output$myPlot = renderPlotly({
# p <- plot_ly(x=foo$mon, y=foo$var_1, line = list(shape="linear"))
for (item in input$show_vars) {
if (item == 1){
p <- plot_ly(x=foo$mon, y=foo[[item]], line = list(shape="linear"))
}
if(item > 1){
p <- add_trace(p, x = foo$mon, y = foo[[item]], evaluate = TRUE)
}
}
print(p)
See if this is what you want. Also you probably want to remove the first two items in the checkboxGroup so that they are not removable (depending on what you want).
output$myPlot = renderPlotly({
p <- plot_ly(x=foo$mon, y=foo$var_1, line = list(shape="linear"))
## How to add the other traces selected in input$show_vars??
for (item in input$show_vars) {
p <- add_trace(p, x = foo$mon, y = foo[[item]], evaluate = TRUE)
}
print(p)
})

Resources