Watson-Williams Test in R Circular - r

I'm using the circular package for R to do some Watson-Williams tests for homogeneity of simulated data sets. The test checks the assumption that the parameter of concentration is high (Batchelet's 1981 book Circular Statistics in Biology describes the assumption as K>2).
My problem is that I'm getting a warning that my "Global concentration parameter" is less than 2, even if my simulated data has K>2.
What is the Global concentration parameter, and how does this differ from K?
Here is my code:
#create 1st directional angles
angles1<- deg(rvm(200, 90, 3)) #n=200, mean angle = 90 degrees, K = 3
#create 2nd directional angles
angles2<- deg(rvm(200, 90, 3))
watson.williams.test(list(angles1,angles2))
and here is the warning:
Warning message: In watson.williams.test.default(x, group) : Global concentration parameter: 0.151 < 2. The test is probably not applicable

Related

I am working on ordered Logit. Tried to solve the estimates and proportional odds using R. Is it correct

Question: Have a look at data set Two.csv. It contains a potentially dependent binary variable Y , and
two potentially independent variables {X1, X2} for each unit of measurement.
(a) Read data set Two.csv into R and have a look at the format of the dependent variable.
Discuss three models which might be appropriate in this data situation. Discuss which
aspects speak in favor of each model, and which aspects against.
(b) Suppose variable Y measures financial ratings A : y = 1, B : y = 2, and C : y = 3, that
is, the creditworthiness A: high, B: intermediate, C: low for unit of measurement firm
i. Model Y by means of an ordered Logit model as a function of {X1,X2} and estimate
your model by means of a built-in command.
(c) Explain the proportional odds-assumption and test whether the assumption is critical
in the context of the data set at hand.
##a) Read data set Two.csv into R and have a look at the format of the dependent variable.
O <- read.table("C:/Users/DELL/Downloads/ExamQEIII2021/Two.csv",header=TRUE,sep=";")
str(O)
dim(O)
View(O)
##b)
library(oglmx)
ologit<- oglmx(y~x1+x2,data=O, link="logit",constantMEAN = FALSE, constantSD = FALSE,
delta=0,threshparam =NULL)
results.ologis <- ologit.reg(y~x1+x2,data=O)
summary(results.ologis)
## x1 1.46251
## x2 -0.45391
margins.oglmx(results.ologis,ascontinuous = FALSE) #Build in command for AMElogit
##c) Explain the proportional odds-assumption and test whether the assumption is critical
#in the context of the data set at hand.
#ordinal Logit WITH proportional odds(PO)
library(VGAM)
a <- vglm(y~x1+x2,family=cumulative(parallel=TRUE),data=O)
summary(a)
#ordinal Logit WITHOUT proportional odds [a considers PO and c doesn't]
c <- vglm(y~x1+x2,family=cumulative(parallel=FALSE),data=O)
summary(c)
pchisq(deviance(a)-deviance(c),df.residual(a)-df.residual(c),lower.tail=FALSE)
## 0.4936413 ## No significant difference in the variance left unexplained. Cannot
#confirm that PO assumption is critical.
#small model
LLa <- logLik(a)
#large model
LLc <- logLik(c)
#2*LLc-2*
df.residual(c)
df.residual(a) #or similarly, via a Likelihood Ratio test.
# or, if you are unsure about the number of degrees of freedom
LL<- 2*(LLc -LLa)
1-pchisq(LL,df.residual(a)-df.residual(c))
## 0.4936413 [SAME AS ## No sign. line]
##Conclusion: Likelihood do not differ significantly with the assumption of non PO.

GAM with "gp" smoother: how to retrieve the variogram parameters?

I am using the following geoadditive model
library(gamair)
library(mgcv)
data(mack)
mack$log.net.area <- log(mack$net.area)
gm2 <- gam(egg.count ~ s(lon,lat,bs="gp",k=100,m=c(2,10,1)) +
s(I(b.depth^.5)) +
s(c.dist) +
s(temp.20m) +
offset(log.net.area),
data = mack, family = tw, method = "REML")
Here I am using an exponential covariance function with range = 10 and power = 1 (m=c(2,10,1)). How can I retrieve from the results the variogram parameters (nugget, sill)? I couldn't find anything in the model output.
In smoothing approach the correlation matrix is specified so you only estimate variance parameter, i.e., the sill. For example, you've set m = c(2, 10, 1) to s(, bs = 'gp'), giving an exponential correlation matrix with range parameter phi = 10. Note that phi is not identical to range, except for spherical correlation. For many correlation models the actual range is a function of phi.
The variance / sill parameter is closely related to the smoothing parameter in penalized regression, and you can obtain it by dividing the scale parameter by smoothing parameter:
with(gm2, scale / sp["s(lon,lat)"])
#s(lon,lat)
# 26.20877
Is this right? No. There is a trap here: smoothing parameters returned in $sp are not real ones, and we need the following:
gm2_sill <- with(gm2, scale / sp["s(lon,lat)"] * smooth[[1]]$S.scale)
#s(lon,lat)
# 7.7772
And we copy in the range parameter you've specified:
gm2_phi <- 10
The nugget must be zero, since a smooth function is continuous. Using lines.variomodel function from geoR package, you can visualize the semivariogram for the latent Gaussian spatial random field modeled by s(lon,lat).
library(geoR)
lines.variomodel(cov.model = "exponential", cov.pars = c(gm2_sill, gm2_phi),
nugget = 0, max.dist = 60)
abline(h = gm2_sill, lty = 2)
However, be skeptical on this variogram. mgcv is not an easy environment to interpret geostatistics. The use of low-rank smoothers suggests that the above variance parameter is for parameters in the new parameter space rather than the original one. For example, there are 630 unique spatial locations in the spatial field for mack dataset, so the correlation matrix should be 630 x 630, and the full random effects should be a vector of length-630. But by setting k = 100 in s(, bs = 'gp') the truncated eigen decomposition and subsequent low-rank approximation reduce the random effects to length-100. The variance parameter is really for this vector not the original one. This might explain why the sill and the actual range do not agree with the data and predicted s(lon,lat).
## unique locations
loc <- unique(mack[, c("lon", "lat")])
max(dist(loc))
#[1] 15.98
The maximum distance between two spatial locations in the dataset is 15.98, but the actual range from the variogram seems to be somewhere between 40 and 60, which is too large.
## predict `s(lon, lat)`, using the method I told you in your last question
## https://stackoverflow.com/q/51634953/4891738
sp <- predict(gm2,
data.frame(loc, b.depth = 0, c.dist = 0, temp.20m = 0,
log.net.area = 0),
type = "terms", terms = "s(lon,lat)")
c(var(sp))
#[1] 1.587126
The predicted s(lon,lat) only has variance 1.587, but the sill at 7.77 is way much higher.

How to use response probability (logistic model probability) for Sampford Sampling Method in the Sampling package in R?

I am using the UPsampford() function in Sampling package in R. I need to select a sample with unequal probability, without replacement and fixed sample size. Sampford’s method is working for probability proportion to size only, (i.e. see case 1 in following example) where sum of inclusion probabilities is equal to n1=5 (sample size) but this method gave some warning message for response probability model where sum of inclusion probabilities is Not equal to n1=5 (i.e. see case 2 in following example) and it does not work for my simulated date example where I used n1=200 and gave me warning message like this.
Error in UPsampford(prob2, eps = 1e-06, max_iter = 500) : Too many iterations. The algorithm was stopped.
In addition: There were 50 or more warnings (use warnings() to see the first 50)
1: In .as_int(n) : the argument is not integer
2: In .as_int(n - 1) : the argument is not integer
Question 1: Can I use response probability in Sampford’ Method?
Question 2: Is there any other R package and sampling method (i.e. Madow, midzuno, tille etc) for unequal probability, without replacement and fixed sample where we can use response probability formula (logistic model) instead probability proportion to size formula?
Any solution about case 2?
Example:
library(sampling)
# auxiliary variable
x <- c(30,45,60,25,80,100,30,67,87,56,23,78, 81, 39, 40)
#case 1
n1=5 #sample size
prob <-inclusionprobabilities(a = x, n = n1)
sum(prob) #sum(prob) = n1
sample <- UPsampford(prob, eps=1e-6, max_iter=500)
#case 2
xst<-(x-mean(x))/sd(x) #standardized
prob2 <- (exp(xst)/(1+(exp(xst))))
sum(prob2) #sum(prob2) not equal to n1
sample2 <- UPsampford(prob2, eps=1e-6, max_iter=500)

Chi squared goodness of fit for a geometric distribution

As an assignment I had to develop and algorithm and generate a samples for a given geometric distribution with PMF
Using the inverse transform method, I came up with the following expression for generating the values:
Where U represents a value, or n values depending on the size of the sample, drawn from a Unif(0,1) distribution and p is 0.3 as stated in the PMF above.
I have the algorithm, the implementation in R and I already generated QQ Plots to visually assess the adjustment of the empirical values to the theoretical ones (generated with R), i.e., if the generated sample follows indeed the geometric distribution.
Now I wanted to submit the generated sample to a goodness of fit test, namely the Chi-square, yet I'm having trouble doing this in R.
[I think this was moved a little hastily, in spite of your response to whuber's question, since I think before solving the 'how do I write this algorithm in R' problem, it's probably more important to deal with the 'what you're doing is not the best approach to your problem' issue (which certainly belongs where you posted it). Since it's here, I will deal with the 'doing it in R' aspect, but I would urge to you go back an ask about the second question (as a new post).]
Firstly the chi-square test is a little different depending on whether you test
H0: the data come from a geometric distribution with parameter p
or
H0: the data come from a geometric distribution with parameter 0.3
If you want the second, it's quite straightforward. First, with the geometric, if you want to use the chi-square approximation to the distribution of the test statistic, you will need to group adjacent cells in the tail. The 'usual' rule - much too conservative - suggests that you need an expected count in every bin of at least 5.
I'll assume you have a nice large sample size. In that case, you'll have many bins with substantial expected counts and you don't need to worry so much about keeping it so high, but you will still need to choose how you will bin the tail (whether you just choose a single cut-off above which all values are grouped, for example).
I'll proceed as if n were say 1000 (though if you're testing your geometric random number generation, that's pretty low).
First, compute your expected counts:
dgeom(0:20,.3)*1000
[1] 300.0000000 210.0000000 147.0000000 102.9000000 72.0300000 50.4210000
[7] 35.2947000 24.7062900 17.2944030 12.1060821 8.4742575 5.9319802
[13] 4.1523862 2.9066703 2.0346692 1.4242685 0.9969879 0.6978915
[19] 0.4885241 0.3419669 0.2393768
Warning, dgeom and friends goes from x=0, not x=1; while you can shift the inputs and outputs to the R functions, it's much easier if you subtract 1 from all your geometric values and test that. I will proceed as if your sample has had 1 subtracted so that it goes from 0.
I'll cut that off at the 15th term (x=14), and group 15+ into its own group (a single group in this case). If you wanted to follow the 'greater than five' rule of thumb, you'd cut it off after the 12th term (x=11). In some cases (such as smaller p), you might want to split the tail across several bins rather than one.
> expec <- dgeom(0:14,.3)*1000
> expec <- c(expec, 1000-sum(expec))
> expec
[1] 300.000000 210.000000 147.000000 102.900000 72.030000 50.421000
[7] 35.294700 24.706290 17.294403 12.106082 8.474257 5.931980
[13] 4.152386 2.906670 2.034669 4.747562
The last cell is the "15+" category. We also need the probabilities.
Now we don't yet have a sample; I'll just generate one:
y <- rgeom(1000,0.3)
but now we want a table of observed counts:
(x <- table(factor(y,levels=0:14),exclude=NULL))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 <NA>
292 203 150 96 79 59 47 25 16 10 6 7 0 2 5 3
Now you could compute the chi-square directly and then calculate the p-value:
> (chisqstat <- sum((x-expec)^2/expec))
[1] 17.76835
(pval <- pchisq(chisqstat,15,lower.tail=FALSE))
[1] 0.2750401
but you can also get R to do it:
> chisq.test(x,p=expec/1000)
Chi-squared test for given probabilities
data: x
X-squared = 17.7683, df = 15, p-value = 0.275
Warning message:
In chisq.test(x, p = expec/1000) :
Chi-squared approximation may be incorrect
Now the case for unspecified p is similar, but (to my knowledge) you can no longer get chisq.test to do it directly, you have to do it the first way, but you have to estimate the parameter from the data (by maximum likelihood or minimum chi-square), and then test as above but you have one fewer degree of freedom for estimating the parameter.
See the example of doing a chi-square for a Poisson with estimated parameter here; the geometric follows the much same approach as above, with the adjustments as at the link (dealing with the unknown parameter, including the loss of 1 degree of freedom).
Let us assume you've got your randomly-generated variates in a vector x. You can do the following:
x <- rgeom(1000,0.2)
x_tbl <- table(x)
x_val <- as.numeric(names(x_tbl))
x_df <- data.frame(count=as.numeric(x_tbl), value=x_val)
# Expand to fill in "gaps" in the values caused by 0 counts
all_x_val <- data.frame(value = 0:max(x_val))
x_df <- merge(all_x_val, x_df, by="value", all.x=TRUE)
x_df$count[is.na(x_df$count)] <- 0
# Get theoretical probabilities
x_df$eprob <- dgeom(x_df$val, 0.2)
# Chi-square test: once with asymptotic dist'n,
# once with bootstrap evaluation of chi-sq test statistic
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE)
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE,
simulate.p.value=TRUE, B=10000)
There's a "goodfit" function described as "Goodness-of-fit Tests for Discrete Data" in package "vcd".
G.fit <- goodfit(x, type = "nbinomial", par = list(size = 1))
I was going to use the code you had posted in an earlier question, but it now appears that you have deleted that code. I find that offensive. Are you using this forum to gather homework answers and then defacing it to remove the evidence? (Deleted questions can still be seen by those of us with sufficient rep, and the interface prevents deletion of question with upvoted answers so you should not be able to delete this one.)
Generate a QQ Plot for testing a geometrically distributed sample
--- question---
I have a sample of n elements generated in R with
sim.geometric <- function(nvals)
{
p <- 0.3
u <- runif(nvals)
ceiling(log(u)/log(1-p))
}
for which i want to test its distribution, specifically if it indeed follows a geometric distribution. I want to generate a QQ PLot but have no idea how to.
--------reposted answer----------
A QQ-plot should be a straight line when compared to a "true" sample drawn from a geometric distribution with the same probability parameter. One gives two vectors to the functions which essentially compares their inverse ECDF's at each quantile. (Your attempt is not particularly successful:)
sim.res <- sim.geometric(100)
sim.rgeom <- rgeom(100, 0.3)
qqplot(sim.res, sim.rgeom)
Here I follow the lead of the authors of qqplot's help page (which results in flipping that upper curve around the line of identity):
png("QQ.png")
qqplot(qgeom(ppoints(100),prob=0.3), sim.res,
main = expression("Q-Q plot for" ~~ {G}[n == 100]))
dev.off()
---image not included---
You can add a "line of good fit" by plotting a line through through the 25th and 75th percentile points for each distribution. (I added a jittering feature to this to get a better idea where the "probability mass" was located:)
sim.res <- sim.geometric(500)
qqplot(jitter(qgeom(ppoints(500),prob=0.3)), jitter(sim.res),
main = expression("Q-Q plot for" ~~ {G}[n == 100]), ylim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )),
xlim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )))
qqline(sim.res, distribution = function(p) qgeom(p, 0.3),
prob = c(0.25, 0.75), col = "red")

Root mean square deviation on binned GAM results using R

Background
A PostgreSQL database uses PL/R to call R functions. An R call to calculate Spearman's correlation looks as follows:
cor( rank(x), rank(y) )
Also in R, a naïve calculation of a fitted generalized additive model (GAM):
data.frame( x, fitted( gam( y ~ s(x) ) ) )
Here x represents the years from 1900 to 2009 and y is the average measurement (e.g., minimum temperature) for that year.
Problem
The fitted trend line (using GAM) is reasonably accurate, as you can see in the following picture:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
Possible Solution
One way to improve the accuracy of the correlation is to use a root mean square error (RMSE) calculation on binned data.
Questions
Q.1. How would you implement the RMSE calculation on the binned data to get a correlation (between 0 and 1) of GAM's fit to the measurements, in the R language?
Q.2. Is there a better way to find the accuracy of GAM's fit to the data, and if so, what is it (e.g., root mean square deviation)?
Attempted Solution 1
Call the PL/R function using the observed amounts and the model (GAM) amounts: correlation_rmse := climate.plr_corr_rmse( v_amount, v_model );
Define plr_corr_rmse as follows (where o and m represent the observed and modelled data): CREATE OR REPLACE FUNCTION climate.plr_corr_rmse(
o double precision[], m double precision[])
RETURNS double precision AS
$BODY$
sqrt( mean( o - m ) ^ 2 )
$BODY$
LANGUAGE 'plr' VOLATILE STRICT
COST 100;
The o - m is wrong. I'd like to bin both data sets by calculating the mean of every 5 data points (there will be at most 110 data points). For example:
omean <- c( mean(o[1:5]), mean(o[6:10]), ... )
mmean <- c( mean(m[1:5]), mean(m[6:10]), ... )
Then correct the RMSE calculation as:
sqrt( mean( omean - mmean ) ^ 2 )
How do you calculate c( mean(o[1:5]), mean(o[6:10]), ... ) for an arbitrary length vector in an appropriate number of bins (5, for example, might not be ideal for only 67 measurements)?
I don't think hist is suitable here, is it?
Attempted Solution 2
The following code will solve the problem, however it drops data points from the end of the list (to make the list divisible by 5). The solution isn't ideal as the number "5" is rather magical.
while( length(o) %% 5 != 0 ) {
o <- o[-length(o)]
}
omean <- apply( matrix(o, 5), 2, mean )
What other options are available?
Thanks in advance.
You say that:
The problem is that the correlations (shown in the bottom left) do not accurately reflect how closely the model fits the data.
You could calculate the correlation between the fitted values and the measured values:
cor(y,fitted(gam(y ~ s(x))))
I don't see why you want to bin your data, but you could do it as follows:
mean.binned <- function(y,n = 5){
apply(matrix(c(y,rep(NA,(n - (length(y) %% n)) %% n)),n),
2,
function(x)mean(x,na.rm = TRUE))
}
It looks a bit ugly, but it should handle vectors whose length is not a multiple of the binning length (i.e. 5 in your example).
You also say that:
One way to improve the accuracy of the
correlation is to use a root mean
square error (RMSE) calculation on
binned data.
I don't understand what you mean by this. The correlation is a factor in determining the mean squared error - for example, see equation 10 of Murphy (1988, Monthly Weather Review, v. 116, pp. 2417-2424). But please explain what you mean.

Resources