Function that do addition or subtraction randomly - r

I wonder if there is a function that can do addition or subtraction operator randomly:
x +- y

The question boils down to getting -1 or 1 in random fashion. You can get it using sample:
x + sample(c(-1,1),size=1)*y
or runif:
x + sign(runif(n=1,min=-1,max=1))*y
If x and y are vectors, you can generate sequence of numbers -1 and 1 of the same length as the length of x, as #BondedDust suggested:
x + sample(c(-1,1),size=length(x),replace=T)*y

Related

How to draw a binary linear equation in R?

Now I have a binary linear equation z = wx1 - (1-w)x2, and w varys from 0 to 1 in 0.1 intervals. With two variables x1 and x2, I want to plot this equation with R.
With constraints x1<=19266669.5, and x2<=52575341.065
I tried the code below, but it didn't work.
w=seq(0,1,0.1)
x1<=19266669.5
x2<=52575341.065
z = w*x1 - (1-w)*x2
plot(w,z,type="l",lwd=2,col="red",main="z = w*x1 - (1-w)*x2")
How should I improve the code? Thank you in advance!
Your are assigning values so, it is an assignment error, you should use first (based on your snippet) the operator <-
Then to plot use <=, or whatever relational operator you want.
Assignments operators:
x <- value
x <<- value<="" code="">
value -> x
value ->> x
x = value

R Derivatives of an Inverse

I have an expression that contains several parts. However, for simplicity, consider only the following part as MWE:
Let's assume we have the inverse of a matrix Y that I want to differentiate w.r.t. x.
Y is given as I - (x * b * t(b)), where I is the identity matrix, x is a scalar, and b is a vector.
According to The Matrix Cookbook Equ. 59, the partial derivative of an inverse is:
Normally I would use the function D from the package stats to calculate the derivatives. But that is not possible in this case, because e.g. solve to specify Y as inverse and t() is not in the table of derivatives.
What is the best workaround to circumvent this problem? Are there any other recommended packages that can handle such input?
Example that doesn't work:
f0 <- expression(solve(I - (x * b %*% t(b))))
D(f0, "x")
Example that works:
f0 <- expression(x^3)
D(f0, "x")
3 * x^2
I assume that the question is how to get an explicit expression for the derivative of the inverse of Y with respect to x. In the first section we compute it and in the second section we double check it by computing it numerically and show that the two approaches give the same result.
b and the null space of b are both eigenspaces of Y which we can readily verify by noting that Yb = (1-(b'b)x)b and if z belongs to the nullspace of b then Yz = z. This also shows that the corresponding eigenvalues are 1 - x(b'b) with multiplicity 1 and 1 with multiplicity n-1 (since the nullspace of b has that dimension).
As a result of the fact that we can expand such a matrix into the sum of each eigenvalue times the projection onto its eigenspace we can express Y as the following where bb'/b'b is the projection onto the eigenspace spanned by b and the part pre-multiplying it is the eigenvalue. The remaining terms do not involve x because they involve an eigenvalue of 1 independently of x and the nullspace of b is independent of x as well.
Y = (1-x(b'b))(bb')/(b'b) + terms not involving x
The inverse of Y is formed by taking the reciprocals of the eigenvalues so:
Yinv = 1/(1-x(b'b)) * (bb')/(b'b) + terms not involving x
and the derivative of that wrt x is:
(b'b) / (1 - x(b'b))^2 * (bb')/(b'b)
Cancelling the b'b and writing the derivative in terms of R code:
1/(1 - x*sum(b*b))^2*outer(b, b)
Double check
Using specific values for b and x we can verify it against the numeric derivative as follows:
library(numDeriv)
x <- 1
b <- 1:3
# Y inverse as a function of x
Yinv <- function(x) solve(diag(3) - x * outer(b, b))
all.equal(matrix(jacobian(Yinv, x = 1), 3),
1/(1 - x*sum(b*b))^2*outer(b, b))
## [1] TRUE

How can I code this equation with double summation in R?

So I'm having hard time coding the above equation, mainly the part which contains that double sum over i's and over j.
I'n my case, my n = 200 and p = 15. My yi:s are in a vector Y = (y1,y2,...yn) that is vector of length 200 and Xij:s are in a matrix which has 15 columns and 200 rows. Bj:s are in a vector of length 15.
My own solution, which I'm fairly certain is wrong, is this:
b0 <- 1/200 * sum(Y - sum(matr*b))
And here is code which you can use to reproduce my vectors and matrix:
matr <- t(mvrnorm(15,mu= rep(0,200),diag(1,nrow = 200)))
Y <- rnorm(n = 200)
b <- rnorm(n = 15)
Use matrix multiplication:
mean(y - x %*% b)
Note that if y and x are known and b is the least squares regression estimate of the coefficients then we can write it as:
fm <- lm(y ~ x + 0)
mean(resid(fm))
and that necessarily equals 0 if there is an intercept, i.e. a constant column in x, since the residual vector must be orthogonal to the range of x and taking the mean is the same as taking the inner product of the residuals and a vector whose elements are all the same (and equal to 1/n).

R: approximating `e = exp(1)` using `(1 + 1 / n) ^ n` gives absurd result when `n` is large

So, I was just playing around with manually calculating the value of e in R and I noticed something that was a bit disturbing to me.
The value of e using R's exp() command...
exp(1)
#[1] 2.718282
Now, I'll try to manually calculate it using x = 10000
x <- 10000
y <- (1 + (1 / x)) ^ x
y
#[1] 2.718146
Not quite but we'll try to get closer using x = 100000
x <- 100000
y <- (1 + (1 / x)) ^ x
y
#[1] 2.718268
Warmer but still a bit off...
x <- 1000000
y <- (1 + (1 / x)) ^ x
y
#[1] 2.71828
Now, let's try it with a huge one
x <- 5000000000000000
y <- (1 + (1 / x)) ^ x
y
#[1] 3.035035
Well, that's not right. What's going on here? Am I overflowing the data type and need to use a certain package instead? If so, are there no warnings when you overflow a data type?
You've got a problem with machine precision. As soon as (1 / x) < 2.22e-16, 1 + (1 / x) is just 1. Mathematical limit breaks down in finite-precision numerical computations. Your final x in the question is already 5e+15, very close to this brink. Try x <- x * 10, and your y would be 1.
This is neither "overflow" nor "underflow" as there is no difficulty in representing a number as small as 1e-308. It is the problem of the loss of significant digits during floating-point arithmetic. When you do 1 + (1 / x), the bigger x is, the fewer significant digits in the (1 / x) part can be preserved when you add it to 1, and eventually you lose that (1 / x) term altogether.
## valid 16 significant digits
1 + 1.23e-01 = 1.123000000000000|
1 + 1.23e-02 = 1.012300000000000|
... ...
1 + 1.23e-15 = 1.000000000000001|
1 + 1.23e-16 = 1.000000000000000|
Any numerical analysis book would tell you the following.
Avoid adding a large number and a small number. In floating-point addition a + b = a * (1 + b / a), if b / a < 2.22e-16, there us a + b = a. This implies that when adding up a number of positive numbers, it is more stable to accumulate them from the smallest to the largest.
Avoid subtracting one number from another of the same magnitude, or you may get cancellation error. The web page has a classic example of using the quadratic formula.
You are also advised to have a read on Approximation to constant "pi" does not get any better after 50 iterations, a question asked a few days after your question. Using a series to approximate an irrational number is numerically stable as you won't get the absurd behavior seen in your question. But the finite number of valid significant digits imposes a different problem: numerical convergence, that is, you can only approximate the target value up to a certain number of significant digits. MichaelChirico's answer using Taylor series would converge after 19 terms, since 1 / factorial(19) is already numerically 0 when added to 1.
Multiplication / division between floating-point numbers don't cause problem on significant digits; they may cause "overflow" or "underflow". However, given the wide range of representable floating-point values (1e-308 ~ 1e+307), "overflow" and "underflow" should be rare. The real difficulty is with addition / subtraction where significant digits can be easily lost. See Can I stably invert a Vandermonde matrix with many small values in R? for an example on matrix computations. It is not impossible to get higher precision, but the work is probably more involved. For example, OP of the matrix example eventually used the GMP (GNU Multiple Precision Arithmetic Library) and associated R packages to proceed: How to put Rmpfr values into a function in R?
You might also try the Taylor series approximation to exp(1), namely
e^x = \sum_{k = 0}{\infty} x^k / k!
Thus we can approximate e = e^1 by truncating this sum; in R:
sprintf('%.20f', exp(1))
# [1] "2.71828182845904509080"
sprintf('%.20f', sum(1/factorial(0:10)))
# [1] "2.71828180114638451315"
sprintf('%.20f', sum(1/factorial(0:100)))
# [1] "2.71828182845904509080"

R programming: Linear Equation

How can I state, in R code, a list of certain possible values for a given equation? For example (this is just a random equation feel free to use any formula suitable):
For positive integers a, b, and c with the formula x^3 + y^2 = z.
How can I test for all possible combinations of x and y less than or equal to 1000 and c to satisfy the formula and check if the variables are also valid inputs?
You can generate all possible values with expand.grid and then subset to the ones meeting your criteria:
vals <- expand.grid(x=seq(1000), y=seq(1000))
subset(vals, x^3 + y^2 == 108)
# x y
# 8003 3 9
# 9002 2 10

Resources