I'm trying know if exist something similar to TOP in SQL on DynamoDB
I'm reading the documentation http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
But I didn't find something similar.
Someones knows a way to do it?
Limit in Scan/Query is what you were looking for
Both ScanRequest and QueryRequest have a withLimit function for limiting the maximum number of items to evaluate for a request.
From the documentation:
The maximum number of items to evaluate (not necessarily the number of
matching items). If DynamoDB processes the number of items up to the
limit while processing the results, it stops the operation and returns
the matching values up to that point, and a key in LastEvaluatedKey to
apply in a subsequent operation, so that you can pick up where you
left off. Also, if the processed data set size exceeds 1 MB before
DynamoDB reaches this limit, it stops the operation and returns the
matching values up to the limit, and a key in LastEvaluatedKey to
apply in a subsequent operation to continue the operation. For more
information, see Query and Scan in the Amazon DynamoDB Developer
Guide.
Related
I know dynamodb query has limitation on maximum response data size is 1MB. But does it have limitation on the input filter parameter? I may need to send a filter expression has a long list of values, I wonder whether it works without limtation?
As per AWS documentation:
The maximum length of any expression string is 4 KB, which includes ProjectionExpression, ConditionExpression, UpdateExpression, and FilterExpression.
check more details here
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ServiceQuotas.html#limits-expression-parameters
hope it answer your question.
Given a potentially large (up to 10^7) set of IDs (together with associated partition keys), I need to verify that there is no document in a Cosmos DB collection with an ID that is in the given set.
There are two obvious ways to achieve this:
Check the existence for each ID/partition key pair individually using parallel point reads, with AllowBulkExecution = true, and abort as soon as a read comes back successfully.
Group the IDs by partition key, and for each group, issue parallel queries of the following form (such that each query is smaller than the maximum query size 256 kB), and abort as soon as any query returns with a non-empty result:
SELECT c.id FROM c
WHERE c.partitionkey = 'partition123' AND ARRAY_CONTAINS(['id1', 'id2', ...], c.id)
LIMIT 1
Is it possible to say, without trying it out, which one is faster?
Here is a bit more context:
The client is an Azure App Service located in the same region as the Cosmos DB instance.
The Cosmos DB collection contains about 10^7 documents and has a throughput of 4000 RU/s.
The IDs are actually GUID strings of length 36, so the number of IDs per query in Solution 2 would be limited to about 6500 in order to not exceed the maximum query size. In other words, the number of required queries in Solution 2 is about n/6500 where n is the number of IDs in the set.
The number of different partition keys is small (< 10).
The average document size is about 500 B.
Default indexing policy.
A bit more background: The check is part of an import/initial load operation. More precisely, it is part of the validation of an import set so an error can be returned before the write operations begin. So the expected (non-error) case is that none of the IDs in the set already exists. The import operation is not expected to be executed frequently (though certainly more than once), so managing auxiliary processes/data just to optimize for this check would not be a good tradeoff.
Not quite sure I understand the need for this but... queries will cost more than a point-read, in terms of RU cost (and given your doc size, those point reads are going to cost 1 RU).
I don't see how you will be able to abandon parallel point-reads if you succeed in finding a particular ID within a given partition. Also remember that an ID is only unique within a partition, so it's possible to have that ID in multiple partitions.
It is likely more efficient to just attempt to write a given ID to a given partition, and see if it succeeds (it'll fail if there's an ID collision).
Lastly: For all practical purposes, you won't have a duplicate ID if you're generating a new GUID for every document you're saving.
Let us say, We have a situation where instead of getting the total count in a table, get the count of records with a particular status.
We know DynamoDb is schemaless and still has to count each record one by one to get the total count.
And yet, How can we leverage the above need using dynamoDb queries?
While normally "Query" or "Scan" requests return all the matching items, you can pass the Select=COUNT parameter and ask to retrieve only the number of matching items, instead of the actual items. But before you go doing that, there are a few things you should know:
DynamoDB will still be reading - and you will still be paying for - all the data, even if just for being counted. Doing a "Scan" with a filter is in almost all cases out of the question, because it will read the entire data set every time. With a "Query" you can ask to read just one partition, or a contiguous range of sort-keys in one partition, which in some cases may be reasonable enough (but please think if it is, in your use case).
Even if you're not actually reading the data, and just counting, DynamoDB still does Scan and Query with "paging", i.e., your reads request will read just 1MB of data from disk, return you the partial count, and ask you to submit another request to resume the scan. Your DynamoDB library probably has a way to automate this resumption, so for example it can run thousands or whatever number of queries needed until finally finishing the scan and calculating the total sum.
In some cases, it may make sense for to maintain a counter in addition to the data. Writes will be more expensive (e.g., each write adds data and increments the counter), but reads that need this counter will be hugely cheaper - so it all depends on how much of each your workload needs.
I have a use case where I have to return all elements of a table in Dynamo DB.
Suppose my table has a partition key (Column X) having same value in all rows say "monitor" and sort key (Column Y) with distinct elements.
Will there be any difference in execution time in the below approaches or is it the same?
Scanning whole table.
Querying data based on the partition key having "monitor".
You should use the parallell scans concept. Basically you're doing multiple scans at once on different segments of the Table. Watch out for higher RCU usage though.
Avoid using scan as far as possible.
Scan will fetch all the rows from a table, you will have to use pagination also to iterate over all the rows. It is more like a select * from table; sql operation.
Use query if you want to fetch all the rows based on the partition key. If you know which partition key you want the results for, you should use query, because it will kind of use indexes to fetch rows only with the specific partition key
Direct answer
To the best of my knowledge, in the specific case you are describing, scan will be marginally slower (esp. in first response). This is when assuming you do not do any filtering (i.e., FilterExpression is empty).
Further thoughts
DynamoDB can potentially store huge amounts of data. By "huge" I mean "more than can fit in any machine's RAM". If you need to 'return all elements of a table' you should ask yourself: what happens if that table grows such that all elements will no longer fit in memory? you do not have to handle this right now (I believe that as of now the table is rather small) but you do need to keep in mind the possibility of going back to this code and fixing it such that it addresses this concern.
questions I would ask myself if I were in your position:
(1) can I somehow set a limit on the number of items I need to read (say,
read only the first 1000 items)?
(2) how is this information (the list of
items) used? is it sent back to a JS application running inside a
browser which displays it to a user? if the answer is yes, then what
will the user do with a huge list of items?
(3) can you work on the items one at a time (or 10 or 100 at a time)? if the answer is yes then you only need to store one (or 10 or 100) items in memory but not the entire list of items
In general, in DDB scan operations are used as described in (3): read one item (or several items) at a time, do some processing and then moving on to the next item.
I have a question. I m pretty new to DynamoDB but have been working on large scale aggregation on SQL databases for a long time.
Suppose you have a table called GamePoints (PlayerId, GameId, Points) and would like to create a ranking table Rankings (PlayerId, Points) sorted by points.
This table needs to be updated on an hourly basis but keeping the previous version of its contents is not required. Just the current Rankings.
The query will always be give me the ranking table (with paging).
The GamePoints table will get very very large over time.
Questions:
Is this the best practice schema for DynamoDB ?
How would you do this kind of aggregation?
Thanks
You can enable a DynamoDB Stream on the GamePoints table. You can read stream records from the stream to maintain materialized views, including aggregations, like the Rankings table. Set StreamViewType=NEW_IMAGE on your GamePoints table, and set up a Lambda function to consume stream records from your stream and update the points per player using atomic counters (UpdateItem, HK=player_id, UpdateExpression="ADD Points #stream_record_points", ExpressionAttributeValues={"#stream_record_points":[put the value from stream record here.]}). As the hash key of the Rankings table would still be the player ID, you could do full table scans of the Rankings table every hour to get the n highest players, or all the players and sort.
However, considering the size of fields (player_id and number of points probably do not take more than 100 bytes), an in memory cache updated by a Lambda function could equally well be used to track the descending order list of players and their total number of points in real time. Finally, if your application requires stateful processing of Stream records, you could use the Kinesis Client Library combined with the DynamoDB Streams Kinesis Adapter on your application server to achieve the same effect as subscribing a Lambda function to the Stream of the GamePoints table.
An easy way to do this is by using DynamoDb's HashKey and Sort key. For example, the HashKey is the GameId and Sort key is the Score. You then query the table with a descending sort and a limit to get the real-time top players in O(1).
To get the rank of a given player, you can use the same technique as above: you get the top 1000 scores in O(1) and you then use BinarySearch to find the player's rank amongst the top 1000 scores in O(log n) on your application server.
If the user has a rank of 1000, you can specify that this user has a rank of 1000+. You can also obviously change 1000 to a greater number (100,000 for example).
Hope this helps.
Henri
The PutItem can be helpful to implement the persistence logic according to your Use Case:
PutItem Creates a new item, or replaces an old item with a new item.
If an item that has the same primary key as the new item already
exists in the specified table, the new item completely replaces the
existing item. You can perform a conditional put operation (add a new
item if one with the specified primary key doesn't exist), or replace
an existing item if it has certain attribute values. Source:
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
In terms of querying the data, if you know for sure that you are going to be reading the entire Ranking table, I would suggest doing it through several read operations with minimum acceptable page size so you can make the best use of your provisioned throughput. See the guidelines below for more details:
Instead of using a large Scan operation, you can use the following
techniques to minimize the impact of a scan on a table's provisioned
throughput.
Reduce Page Size
Because a Scan operation reads an entire page (by default, 1 MB), you
can reduce the impact of the scan operation by setting a smaller page
size. The Scan operation provides a Limit parameter that you can use
to set the page size for your request. Each Scan or Query request that
has a smaller page size uses fewer read operations and creates a
"pause" between each request. For example, if each item is 4 KB and
you set the page size to 40 items, then a Query request would consume
only 40 strongly consistent read operations or 20 eventually
consistent read operations. A larger number of smaller Scan or Query
operations would allow your other critical requests to succeed without
throttling.
Isolate Scan Operations
DynamoDB is designed for easy scalability. As a result, an application
can create tables for distinct purposes, possibly even duplicating
content across several tables. You want to perform scans on a table
that is not taking "mission-critical" traffic. Some applications
handle this load by rotating traffic hourly between two tables – one
for critical traffic, and one for bookkeeping. Other applications can
do this by performing every write on two tables: a "mission-critical"
table, and a "shadow" table.
SOURCE: http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryAndScanGuidelines.html#QueryAndScanGuidelines.BurstsOfActivity
You can also segment your tables by GameId (e.g. Ranking_GameId) to distribute the data more evenly and give you more granularity in terms of provisioned throughput.