What is the purpose of single assignment? - functional-programming

I'm currently trying to master Erlang. It's the first functional programming language that I look into and I noticed that in Erlang, each assignments that you do is a single assignment. And apparently, not just in Erlang, but in many other functional programming languages, assignments are done through single assignment.
I'm really confused about why they made it like that. What exactly is the purpose of single assignment? What benefits can we get from it?

Immutability (what you call single assignment), simplifies a lot of things because it takes out the "time" variable from your programs.
For example, in mathematics if you say
x = y
You can replace x for y, everywhere. In operational programming languages you can't ensure that this equality holds: there is a "time" (state) associated with each line of code. This time state also leaves the door open to undesired side effects which is the enemy number one of modularity and concurrency.
For more information see this.

Because of Single Assignment, Side effects are so minimal. Infact, its so hard to write code with race conditions or any side effects in Erlang. This is because, the Compiler easilly tells un-used variables, created terms which are not used, shadowed variables (especially inside funs ) e.t.c. Another advantage that Erlang gained in this is Referential Transparency. A function in Erlang will depend only on the variables passed to it and NOT on global variables, except MACROS (and macros cannot be changed at run-time, they are constants.). Lastly, if you watched the Erlang Movie, the Sophisticated Error Detection Mechanism which was built into Erlang depends so much on the fact that in Erlang, variables are assigned Once.

Having variables keep their values makes it much easier to understand and debug the code. With concurrent processes you get the same kind of problem anyway, so there is enough complication anyway without having just any variable potentially change its value at any time. Think of it as encapsulating side effects by only allowing them when explicit.

Related

Global State in Functional Programming (F#)

I want to compute some functions which are dependent on some variables (specific data on which I run the code) and global variables, which are unlikely to be changed, but I want to leave them user-tunable. Just to clarify with an example, suppose I want to declare the following function:
let multiplyByGain x =
x * gain
Where would you declare gain, being gain a global constant for the whole project. In a separate module with constants? That would couple the module with this code, though. Or would you use a curried version:
let multiblyByGain x gain =
x * gain
and then specialize for the specific values? But suppose you have many functions like that, you will have to inject gain to all of them (in a sort of linking module)?
In my specific problem this becomes more cumbersome because both x and gain are arrays which must have the same length, suppose I have to do a Array.zip, e.g.: what is the best practice in terms of functional design to address a global constant, as gain, in a general way?
P.S.: I have found this old postenter link description here, but addresses only a specific problem.
There is no single correct answer to the question and the best approach will depend on a variety of other constraints and requirements that you have. Also, it depends on whether you are asking specifically about F# or whether you are asking about functional programming more generally. I think there are three main points:
Keeping it simple.
Using a module that exposes gain as a global value, which has some initialization code to read configuration seems like a good default approach in F#. If this is changed only rarely (say, before you run the whole computation), then mutation is not going to cause you any troubles. You just need to be careful to avoid changing the values while some computation is still running. I think most F# programmers code tend to be quite pragmatic about this and this seems like the easiest thing to start with.
Unit testing.
If you want to unit ytest your multiplyByGain function with different gain as an argument, then you'll need some way of passing different values of gain to the function from your unit tests. In this case, having it as an additional parameter and using currying is nice, because you can just call it with other values of gain from your tests.
Functional programming.
Some functional language communities (especially Haskell and, sometimes, Scala) are way more strict about state. The purely functional way of keeping state would be to use monads (either the reader monad or some kind of free monad structure). This makes your code a lot more complicated (both conceptually and in terms of extra syntactic overhead), but it is a purely functional solution that eliminates state. In F#, this kind of approach is even more cumbersome, so it's not very common.

What is the need for immutable/persistent data structures in erlang

Each Erlang process maintains its own private address space. All communication happens via copying without sharing (except big binaries). If each process is processing one message at a time with no concurrent access over its objects, I don't see why do we need immutable/persistent data structures.
Erlang was initially implemented in Prolog, which doesn't really use mutable data structures either (though some dialects do). So it started off without them. This makes runtime implementation simpler and faster (garbage collection in particular).
So adding mutable data structures would require a lot of effort, could introduce bugs, and Erlang programmers are nearly by definition at least willing to live without them.
Many actually consider their absence to be a positive good: less concern about object identity, no need for defensive copying because you don't know whether some other piece of code is going to modify the data you passed (or might be changed later to modify it), etc.
This absence does mean that Erlang is pretty unusable in some domains (e.g. high performance scientific computing), at least as the main language. But again, this means that nobody in these domains is going to use Erlang in the first place and so there's no particular incentive to make it usable at the cost of making existing users unhappy.
I remember seeing a mailing list post by Joe Armstrong quite a long time ago (which I couldn't find with a quick search now) saying that he initially planned to add mutable variables when he'd need them... except he never quite did, and performance was good enough for everything he was using Erlang for.
It is indeed the case that in Erlang immutability does not solve any "shared state" problems, as immutable data are "process local".
From the functional programming language perspective, however, immutability offers a number of benefits, summarized adequately in this Quora answer:
The simplest definition of functional programming is that it’s a programming
paradigm where you are transforming immutable data with functions.
The definition uses functions in the mathematical sense, where it’s
something that takes an input, and produces an output.
OO + mutability tends to violate that definition because when you want
to change a piece of data it generally will not return the output, it
will likely return void or unit, and that when you call a method on
the object the object itself isn’t input for the function.
As far as what advantages the paradigm has, composability, thread
safety, being able to track what went wrong where better, the ability
to sort of separate the data from the actual computation on it being
done, etc.
how would this work?
factorial(1) -> 1;
factorial(X) ->
X*factorial(X-1).
if you run factorial(4), a single process will be running the same function. Each time the function will have it's own value of X, if the value of X was in the scope of the process and not the function recursive functions wouldn't work. So first we need to understand scope. If you want to say that you don't see why data needs to be immutable within the scope of a single function/block you would have a point, but it would be a headache to think about where data is immutable and where it isn't.

Can 'programming without assignment' be considered within the definition of functional programming?

I'm aware that there are several definitions for functional programming. I think it's a nebulous category. My personal definition is something close to 'referential transparency'.
This question is not 'What is the definition of functional programming?'. The assumption is that what we know is as functional programming is a grab-bag of a couple of different ideas with some unclear boundaries.
Now the quite amazing book Structure and Interpretation of Computer Programs contains the following reference to the term functional programming.
Programming without any use of assignments, as we did throughout the first two chapters of this book, is accordingly known as functional programming.
To me that seemed odd.
My question is: Can 'programming without assignment' be considered within the definition of functional programming?
Yes, I think it can, though Scala and LISP users would probably call it a quite narrow definition. But while the one true definition of functional programming remains controversial, we can certainly infer something about the style of programming without assignments.
I assume here that by assignment, we mean mutation of a variable. Note that this is quite different from binding
int i;
i = 1; // overwrite whatever i is with 1
versus
let i = 1 in .... -- say that i is a name for an expression, here 1
Once you have no assignment, there is no mutation. When there is no mutation, certain constructs like loops become useless. For, every variable is just a name for an expression that is constant in the context of the loop, so the loop would run either never or forever. The only way to have "varying" variables is through application of a function to some value, which binds the argument name to that value within and for the lifetime of that function. The only way to have looping is recursion. This, in turn, makes functions eminently important, and as a bonus, all functions are by necessity pure since there is no mutation.
So, there you have it: Without mutation, all that is left is programming with pure functions (if we don't count different approaches of declarative programming without functions, but it turns out that this is less general and more specific for certain tasks (think SQL, Prolog)).
Now we can get some popcorn before we decide the question if programming (only) with pure functions is indeed functional programming. :)

Do purely functional languages really guarantee immutability?

In a purely functional language, couldn't one still define an "assignment" operator, say, "<-", such that the command, say, "i <- 3", instead of directly assigning the immutable variable i, would create a copy of the entire current call stack, except replacing i with 3 in the new call stack, and executing the new call stack from that point onward? Given that no data actually changed, wouldn't that still be considered "purely functional" by definition? Of course the compiler would simply make the optimization to simply assign 3 to i, in which case what's the difference between imperative and purely functional?
Purely functional languages, such as Haskell, have ways of modelling imperative languages, and they are not shy about admitting it either. :)
See http://www.haskell.org/tutorial/io.html, in particular 7.5:
So, in the end, has Haskell simply
re-invented the imperative wheel?
In some sense, yes. The I/O monad
constitutes a small imperative
sub-language inside Haskell, and thus
the I/O component of a program may
appear similar to ordinary imperative
code. But there is one important
difference: There is no special
semantics that the user needs to deal
with. In particular, equational
reasoning in Haskell is not
compromised. The imperative feel of
the monadic code in a program does not
detract from the functional aspect of
Haskell. An experienced functional
programmer should be able to minimize
the imperative component of the
program, only using the I/O monad for
a minimal amount of top-level
sequencing. The monad cleanly
separates the functional and
imperative program components. In
contrast, imperative languages with
functional subsets do not generally
have any well-defined barrier between
the purely functional and imperative
worlds.
So the value of functional languages is not that they make state mutation impossible, but that they provide a way to allow you to keep the purely functional parts of your program separate from the state-mutating parts.
Of course, you can ignore this and write your entire program in the imperative style, but then you won't be taking advantage of the facilities of the language, so why use it?
Update
Your idea is not as flawed as you assume. Firstly, if someone familiar only with imperative languages wanted to loop through a range of integers, they might wonder how this could be achieved without a way to increment a counter.
But of course instead you just write a function that acts as the body of the loop, and then make it call itself. Each invocation of the function corresponds to an "iteration step". And in the scope of each invocation the parameter has a different value, acting like an incrementing variable. Finally, the runtime can note that the recursive call appears at the end of the invocation, and so it can reuse the top of the function-call stack instead of growing it (tail call). Even this simple pattern has almost all of the flavour of your idea - including the compiler/runtime quietly stepping in and actually making mutation occur (overwriting the top of the stack). Not only is it logically equivalent to a loop with a mutating counter, but in fact it makes the CPU and memory do the same thing physically.
You mention a GetStack that would return the current stack as a data structure. That would indeed be a violation of functional purity, given that it would necessarily return something different each time it was called (with no arguments). But how about a function CallWithStack, to which you pass a function of your own, and it calls back to your function and passes it the current stack as a parameter? That would be perfectly okay. CallCC works a bit like that.
Haskell doesn't readily give you ways to introspect or "execute" call stacks, so I wouldn't worry too much about that particular bizarre scheme. However in general it is true that one can subvert the type system using unsafe "functions" such as unsafePerformIO :: IO a -> a. The idea is to make it difficult, not impossible, to violate purity.
Indeed, in many situations, such as when making Haskell bindings for a C library, these mechanisms are quite necessary... by using them you are removing the burden of proof of purity from the compiler and taking it upon yourself.
There is a proposal to actually guarantee safety by outlawing such subversions of the type system; I'm not too familiar with it, but you can read about it here.
Immutability is a property of the language, not of the implementation.
An operation a <- expr that copies data is still an imperative operation, if values that refer to the location a appear to have changed from the programmers point of view.
Likewise, a purely functional language implementation may overwrite and reuse variables to its heart's content, as long as each modification is invisible to the programmer. For example, the map function can in principle overwrite a list instead of creating a new, whenever the language implementation can deduce that the old list won't be needed anywhere.

Advantages of stateless programming?

I've recently been learning about functional programming (specifically Haskell, but I've gone through tutorials on Lisp and Erlang as well). While I found the concepts very enlightening, I still don't see the practical side of the "no side effects" concept. What are the practical advantages of it? I'm trying to think in the functional mindset, but there are some situations that just seem overly complex without the ability to save state in an easy way (I don't consider Haskell's monads 'easy').
Is it worth continuing to learn Haskell (or another purely functional language) in-depth? Is functional or stateless programming actually more productive than procedural? Is it likely that I will continue to use Haskell or another functional language later, or should I learn it only for the understanding?
I care less about performance than productivity. So I'm mainly asking if I will be more productive in a functional language than a procedural/object-oriented/whatever.
Read Functional Programming in a Nutshell.
There are lots of advantages to stateless programming, not least of which is dramatically multithreaded and concurrent code. To put it bluntly, mutable state is enemy of multithreaded code. If values are immutable by default, programmers don't need to worry about one thread mutating the value of shared state between two threads, so it eliminates a whole class of multithreading bugs related to race conditions. Since there are no race conditions, there's no reason to use locks either, so immutability eliminates another whole class of bugs related to deadlocks as well.
That's the big reason why functional programming matters, and probably the best one for jumping on the functional programming train. There are also lots of other benefits, including simplified debugging (i.e. functions are pure and do not mutate state in other parts of an application), more terse and expressive code, less boilerplate code compared to languages which are heavily dependent on design patterns, and the compiler can more aggressively optimize your code.
The more pieces of your program are stateless, the more ways there are to put pieces together without having anything break. The power of the stateless paradigm lies not in statelessness (or purity) per se, but the ability it gives you to write powerful, reusable functions and combine them.
You can find a good tutorial with lots of examples in John Hughes's paper Why Functional Programming Matters (PDF).
You will be gobs more productive, especially if you pick a functional language that also has algebraic data types and pattern matching (Caml, SML, Haskell).
Many of the other answers have focused on the performance (parallelism) side of functional programming, which I believe is very important. However, you did specifically ask about productivity, as in, can you program the same thing faster in a functional paradigm than in an imperative paradigm.
I actually find (from personal experience) that programming in F# matches the way I think better, and so it's easier. I think that's the biggest difference. I've programmed in both F# and C#, and there's a lot less "fighting the language" in F#, which I love. You don't have to think about the details in F#. Here's a few examples of what I've found I really enjoy.
For example, even though F# is statically typed (all types are resolved at compile time), the type inference figures out what types you have, so you don't have to say it. And if it can't figure it out, it automatically makes your function/class/whatever generic. So you never have to write any generic whatever, it's all automatic. I find that means I'm spending more time thinking about the problem and less how to implement it. In fact, whenever I come back to C#, I find I really miss this type inference, you never realise how distracting it is until you don't need to do it anymore.
Also in F#, instead of writing loops, you call functions. It's a subtle change, but significant, because you don't have to think about the loop construct anymore. For example, here's a piece of code which would go through and match something (I can't remember what, it's from a project Euler puzzle):
let matchingFactors =
factors
|> Seq.filter (fun x -> largestPalindrome % x = 0)
|> Seq.map (fun x -> (x, largestPalindrome / x))
I realise that doing a filter then a map (that's a conversion of each element) in C# would be quite simple, but you have to think at a lower level. Particularly, you'd have to write the loop itself, and have your own explicit if statement, and those kinds of things. Since learning F#, I've realised I've found it easier to code in the functional way, where if you want to filter, you write "filter", and if you want to map, you write "map", instead of implementing each of the details.
I also love the |> operator, which I think separates F# from ocaml, and possibly other functional languages. It's the pipe operator, it lets you "pipe" the output of one expression into the input of another expression. It makes the code follow how I think more. Like in the code snippet above, that's saying, "take the factors sequence, filter it, then map it." It's a very high level of thinking, which you don't get in an imperative programming language because you're so busy writing the loop and if statements. It's the one thing I miss the most whenever I go into another language.
So just in general, even though I can program in both C# and F#, I find it easier to use F# because you can think at a higher level. I would argue that because the smaller details are removed from functional programming (in F# at least), that I am more productive.
Edit: I saw in one of the comments that you asked for an example of "state" in a functional programming language. F# can be written imperatively, so here's a direct example of how you can have mutable state in F#:
let mutable x = 5
for i in 1..10 do
x <- x + i
Consider all the difficult bugs you've spent a long time debugging.
Now, how many of those bugs were due to "unintended interactions" between two separate components of a program? (Nearly all threading bugs have this form: races involving writing shared data, deadlocks, ... Additionally, it is common to find libraries that have some unexpected effect on global state, or read/write the registry/environment, etc.) I would posit that at least 1 in 3 'hard bugs' fall into this category.
Now if you switch to stateless/immutable/pure programming, all those bugs go away. You are presented with some new challenges instead (e.g. when you do want different modules to interact with the environment), but in a language like Haskell, those interactions get explicitly reified into the type system, which means you can just look at the type of a function and reason about the type of interactions it can have with the rest of the program.
That's the big win from 'immutability' IMO. In an ideal world, we'd all design terrific APIs and even when things were mutable, effects would be local and well-documented and 'unexpected' interactions would be kept to a minimum. In the real world, there are lots of APIs that interact with global state in myriad ways, and these are the source of the most pernicious bugs. Aspiring to statelessness is aspiring to be rid of unintended/implicit/behind-the-scenes interactions among components.
One advantage of stateless functions is that they permit precalculation or caching of the function's return values. Even some C compilers allow you to explicitly mark functions as stateless to improve their optimisability. As many others have noted, stateless functions are much easier to parallelise.
But efficiency is not the only concern. A pure function is easier to test and debug since anything that affects it is explicitly stated. And when programming in a functional language, one gets in the habit of making as few functions "dirty" (with I/O, etc.) as possible. Separating out the stateful stuff this way is a good way to design programs, even in not-so-functional languages.
Functional languages can take a while to "get", and it's difficult to explain to someone who hasn't gone through that process. But most people who persist long enough finally realise that the fuss is worth it, even if they don't end up using functional languages much.
Without state, it is very easy to automatically parallelize your code (as CPUs are made with more and more cores this is very important).
Stateless web applications are essential when you start having higher traffic.
There could be plenty of user data that you don't want to store on the client side for security reasons for example. In this case you need to store it server-side. You could use the web applications default session but if you have more than one instance of the application you will need to make sure that each user is always directed to the same instance.
Load balancers often have the ability to have 'sticky sessions' where the load balancer some how knows which server to send the users request to. This is not ideal though, for example it means every time you restart your web application, all connected users will lose their session.
A better approach is to store the session behind the web servers in some sort of data store, these days there are loads of great nosql products available for this (redis, mongo, elasticsearch, memcached). This way the web servers are stateless but you still have state server-side and the availability of this state can be managed by choosing the right datastore setup. These data stores usually have great redundancy so it should almost always be possible to make changes to your web application and even the data store without impacting the users.
My understanding is that FP also has a huge impact on testing. Not having a mutable state will often force you to supply more data to a function than you would have to for a class. There's tradeoffs, but think about how easy it would be to test a function that is "incrementNumberByN" rather than a "Counter" class.
Object
describe("counter", () => {
it("should increment the count by one when 'increment' invoked without
argument", () => {
const counter = new Counter(0)
counter.increment()
expect(counter.count).toBe(1)
})
it("should increment the count by n when 'increment' invoked with
argument", () => {
const counter = new Counter(0)
counter.increment(2)
expect(counter.count).toBe(2)
})
})
functional
describe("incrementNumberBy(startingNumber, increment)", () => {
it("should increment by 1 if n not supplied"){
expect(incrementNumberBy(0)).toBe(1)
}
it("should increment by 1 if n = 1 supplied"){
expect(countBy(0, 1)).toBe(1)
}
})
Since the function has no state and the data going in is more explicit, there are fewer things to focus on when you are trying to figure out why a test might be failing. On the tests for the counter we had to do
const counter = new Counter(0)
counter.increment()
expect(counter.count).toBe(1)
Both of the first two lines contribute to the value of counter.count. In a simple example like this 1 vs 2 lines of potentially problematic code isn't a big deal, but when you deal with a more complex object you might be adding a ton of complexity to your testing as well.
In contrast, when you write a project in a functional language, it nudges you towards keeping fancy algorithms dependent on the data flowing in and out of a particular function, rather than being dependent on the state of your system.
Another way of looking at it would be illustrating the mindset for testing a system in each paradigm.
For Functional Programming: Make sure function A works for given inputs, you make sure function B works with given inputs, make sure C works with given inputs.
For OOP: Make sure Object A's method works given an input argument of X after doing Y and Z to the state of the object. Make sure Object B's method works given an input argument of X after doing W and Y to the state of the object.
The advantages of stateless programming coincide with those goto-free programming, only more so.
Though many descriptions of functional programming emphasize the lack of mutation, the lack of mutation also goes hand in hand with the lack of unconditional control transfers, such as loops. In functional programming languages, recursion, in particularly tail recursion, replaces looping. Recursion eliminates both the unconditional control construct and the mutation of variables in the same stroke. The recursive call binds argument values to parameters, rather than assigning values.
To understand why this is advantageous, rather than turning to functional programming literature, we can consult the 1968 paper by Dijkstra, "Go To Statement Considered Harmful":
"The unbridled use of the go to statement has an immediate consequence that it becomes terribly hard to find a meaningful set of coordinates in which to describe the process progress."
Dijkstra's observations, however still apply to structured programs which avoid go to, because statements like while, if and whatnot are just window dressing on go to! Without using go to, we can still find it impossible to find the coordinates in which to describe the process progress. Dijkstra neglected to observe that bridled go to still has all the same issues.
What this means is that at any given point in the execution of the program, it is not clear how we got there. When we run into a bug, we have to use backwards reasoning: how did we end up in this state? How did we branch into this point of the code? Often it is hard to follow: the trail goes back a few steps and then runs cold due to a vastness of possibilities.
Functional programming gives us the absolute coordinates. We can rely on analytical tools like mathematical induction to understand how the program arrived into a certain situation.
For example, to convince ourselves that a recursive function is correct, we can just verify its base cases, and then understand and check its inductive hypothesis.
If the logic is written as a loop with mutating variables, we need a more complicated set of tools: breaking down the logic into steps with pre- and post-conditions, which we rewrite in terms mathematics that refers to the prior and current values of variables and such. Yes, if the program uses only certain control structures, avoiding go to, then the analysis is somewhat easier. The tools are tailored to the structures: we have a recipe for how we analyze the correctness of an if, while, and other structures.
However, by contrast, in a functional program there is no prior value of any variable to reason about; that whole class of problem has gone away.
Haskel and Prolog are good examples of languages which may be implemented as stateless programming languages. But unfortunately they are not so far. Both Prolog and Haskel have imperative implementations currently. See some SMT's, seem closer to stateless coding.
This is why you are having hard time seeing any benefits from these programing languages. Due to imperative implementations we have no performance and stability benefits. So the lack of stateless languages infrastructure is the main reason you feel no any stateless programming language due to its absence.
These are some benefits of pure stateless:
Task description is the program (compact code)
Stability due to absense of state-dependant bugs (the most of bugs)
Cachable results (a set of inputs always cause same set of outputs)
Distributable computations
Rebaseable to quantum computations
Thin code for multiple overlapping clauses
Allows differentiable programming optimizations
Consistently applying code changes (adding logic breaks nothing written)
Optimized combinatorics (no need to bruteforce enumerations)
Stateless coding is about concentrating on relations between data which then used for computing by deducing it. Basically this is the next level of programming abstraction. It is much closer to native language then any imperative programming languages because it allow describing relations instead of state change sequences.

Resources