My company is producing a racing game where the best score is the fastest time. Facebook publishes the time as a regular point score, where a higher score is better. This of course is turning it all upside down.
Is there a way to control how a game's score shown in a story? Ideally we would like to show "seconds" instead of points as well.
No, the Scores API currently only supports 'higher is better' for scores.
If you can't rework your scoring scheme to take this into account, consider using Open Graph actions instead - you can have the aggregations which appear on a user's Timeline ordered by whichever field of the object and action you need them to be ordered by,
Related
like Ola, Uber etc. how they calculate fare
Example when I start from one point to another (like 1 to 2km) shows amount that is 40 rs
how they calculate use map distance in code or something else in code can u please explain how it work? Simply how it works fare system works?
This is lifted directly from the Uber website:
Many data points go into calculating an upfront price, including the
estimated trip time, distance from origin to destination, time of day,
route, and demand patterns. It also includes tolls, taxes, surcharges,
and fees (with the exception of wait time fees).
Some cities do not provide upfront prices. Instead, you’re charged
either a minimum price or a price based on the time and distance for
your trip’s route, which may include a base fare, a Booking Fee,
surcharges, tolls, and dynamic pricing. Prices may vary by location,
the vehicle option you select, and other factors.
So it sounds like a combination of any relevant data points your app is able to collect and that you feel should be considered billable are applied to the calculation. I imagine you would want to use the map distance rather than a predefined route in case of detours, traffic, etc.
I'm logging some custom metrics in Application insights using the TelemetryClient.TrackMetric method in .NET, and I've noticed that occasionally some of the events are duplicated when I view them in the Azure portal.
I've drilled into the data, and the duplicate events have the same itemId and timestamp, but if I show the ingestion time by adding | extend ingestionTime = ingestion_time() to the query then I can see that the ingestion times are different.
This GitHub issue indicates that this behavior is expected, as AI uses at-least-once delivery.
I plot these metrics in charts in the Azure portal using a sum aggregation, however these duplicates are creating trust issues with the charts as the duplicates are simply treated as two separate events.
Is there a way to de-dupe the events based on itemId before plotting the data in the Azure portal?
Update
A more specific example:
I'm running an algorithm, triggered by an event, which results in a reward. The algorithm may be triggered several dozen times a day, and the reward is a positive or negative floating point value. It logs the reward each time to Application Insights as a custom metric (called say custom-reward), along with some additional properties for data splitting.
In the Azure portal I'm creating a simple chart by going to Application Insights -> Metrics and customising the chart. I select my custom-reward metric in the Metric dropdown, and select Sum as the aggregation. I may or may not apply splitting. I save the chart to my dashboard.
This simple chart gives me a nice way of monitoring the system to make sure nothing unexpected is happening, and the Sum value in the bottom left of the chart allows me to quickly see whether the sum of the rewards is positive or negative over the chart's range, and by how much.
However, on occasion I've been surprised by the result (say over the last 12 hours the sum of the rewards was surprisingly negative), and on closer inspection I discovered that a few large negative results have been duplicated. Further investigation shows this has been happening with other events, but with smaller results I tend not to notice.
I'm not that familiar with the advanced querying bit of Application Insights, I actually just used it for the first time today to dig into the events. But it does sound like there might be something I can do there to create a query that I can then plot, with the results deduped?
Update 2
I've managed to make progress with this thanks to the tips by #JohnGardner, so I'll mark that as the answer. I've deduped and plotted the results by adding the following line to the query:
| summarize timestamp=any(timestamp), value=any(value), name=any(name), customDimensions=any(customDimensions) by itemId
Update 3
Adding the following line to the query allowed me to split on custom data (in this case splitting by algorithm ID):
| extend algorithmId = tostring(customDimensions.["algorithm-id"])
With that line added, when you select "Chart" in the query results, algorithmId now shows up as an option in the split dropdown. After that you can click "Pin to dashboard". You lose the handy "sum over the time period" indicator in the bottom left of the chart which you get via the simple "Metrics" chart, however I'm sure I'll be able to recreate that in other ways.
if you are doing your own queries, you would generally be using something like summarize or makeseries to do this deduping for a chart. you wouldn't generally plot individual items unless you are looking at a very small time range?
so instead of something like
summarize count() ...
you could do
summarize dcount(itemId) ...
or you might add a "fake" summarize to a query that didn't need it before with by itemId to coalesce multiple rows into just one, using any(x) to grab any individual row's value for each column for each itemId.
but it really depends on what you are doing in your specific query. if you were using something like sum(itemCount) to also deal with sampling, you have other odd cases now, where the at-least-once delivery might have duplicated sampled items? (updating your question to add a specific query and hypothetical result would possibly lead to a more specific answer).
I'm having a tough time with Google Analytics, trying to understand why the value of metrics changes when segments are applied.
There is a standard audience overview report, which is based on 100% of sessions (no sampling) and the view is not filtered. The period is March of 2017.
Standard "All visitors" segment looks like this:
Then, there is another built-in segment called "Bounced Sessions". When I apply this segment, the "All visitors" values changes:
Amount of users increases, but the count of pageviews decreases.
Any ideas how to explain this?.. Thank you in advance!
Oki, there can be, multiple reasons. Let me explain first how these numbers are calculated, then we move on to your query.
There two types of data gathering and manipulation from google.
Pre-calculated data -- pre-aggregated tables
These are the precalculated data that Google uses to speed up the UI. Google does not specify when this is done but it can be at any point of the time. These are known as pre-aggregated tables
Data calculated on the fly
Some that you do which result in computation or manipulation falls under this category. Like using segments, creating custom reports etc.
Coming to your problem. When you apply segment, every metric that it effects will be calculated again. Thus it may result in numbers greater than you see in normal view.
Standard audience overview report is pre-aggregated at some point of the day. When you apply segment, the results will be calculated with the fresh data. Since latter is the latest, it will automatically give you increased number of the metrics. Even you can see a decrease as well, all depends on your data and user behavior.
Resolution: If you are a premium user, use Big Query. You must rely on big query for every metric as they are fresh and calculated on the fly
I'm looking for a rating system that does not only weight the rating on number of votes, but also time and "activity"
To clarify a bit:
Consider a site where users produce something, like a picture.
There is another type of user that can vote on other peoples pictures (on a scale 1-5), but one picture will only recieve one vote.
The rating a productive user gets is derived from the rating his/hers pictures have recieved, but should be affected by:
How long ago the picture was made
How productive the user has been
A user who's getting 3's and 4's and still making 10 pictures per week should get higher rating than a person that have gotten 5's but only made 1 pic per week and stopped a few month ago.
I've been looking at Bayesian estimate, but that only considers the total amount of votes independent of time or productivity.
My math fu is pretty strong, so all I need is a nudge in right direction and I can probably modify something to fit my needs.
There are many things you could do here.
The obvious approach is to have your measure of the scores decay with time in your internal calculations, for example using an exponential decay with a time constant T. For example, use value = initial_score*exp(-t/T) where t is the time that's passed since picture was submitted. So if T is one month, after one month this score will contribute 1/e, or about 0.37 that it originally did. (You can also do this differentially, btw, with value -= (dt/T)*value, if that's more convenient.)
There's probably a way to work this with a Bayesian approach, but it seems forced to me. Bayesian approaches are generally about predicting something new based on a (usually large) set of prior data, which doesn't directly match your model.
I am about to embark on a new project - a video website. Users will be able to register, and vote on videos by clicking "like" or "dislike", or something to that effect. In any event, it will be a 2-option voting system, not a 5-star system.
Every X number of days, I will be generating a "chart" of the most popular videos. So my question is: how should I determine the popularity of a given video?
If I went the route of tallying up the videos with the most views, this could have the effect of exceptionally bad videos making it to the of the charts (just because they're so bad).
If I go the route of a scoring system based on the amount of "like" and "dislike" votes (eg. 100 like votes, and 50 dislike votes equals a score of 2), videos with few views could appear on the top of the charts.
So, what I need to do is a combination of the two. Barring, of course, spammy views and votes.
What's your guys' thoughts on the subject?
Edit: the following tags were removed: [mysql] [postgresql], to make room for other, more representative tags; the SQL technology used in the intended implementation does not seem to bear much on the considerations regarding the rating model per-se.
You seem to be missing the point that likes and dislikes in movies are anything but objective even within the context of a relatively homogeneous group of "voters". Think how the term "Chix Flix" or the success story called "NetFlix", illustrate this subjectivity...
Yet, if you persist in implementing the model you suggest, there are several hidden variables and system dynamics that need to be acknowledged and possibly taken into account in the rating's formula.
the existence of a third, implicit, value of the vote: "No vote"
i.e. when someone views the movie page and yet doesn't vote, either way.
The problem of dealing with this extra value is its ambiguity: do people not vote because they didn't see the movie or because they neither truly like nor disliked it? Very likely a bit of both, therefore we can/should use the count of the "Page views without vote" in the formula, to boost (somewhat) the rating of movies that do not generate a strong (positive or negative) sentiment (lest the "polarizing" movies will appear more notorious or popular)
the bandwagon effect
Past a certain threshold, and particularly if the rating and/or vote counts is visible before the page view, the rating and vote counts can influence the way people decide to vote (either way) or even decide to abstain from voting. The implication is that the total vote and/or view counts do not relate linearly to the effective rating.
"quality" vs. "notoriety"
Vote ratios in general (eg "likes" / "total" or "likes"/"dislikes" etc.) are indicative of the "quality" of a movie (note the quotes around quality...), whereby the number of votes (and of views) is indicative of the notoriety ("name recognition" etc.) of a movie.
statistical representativity
Very small vote and/or view counts are to be handled carefully because they introduce much volatility in the rating. Phrased otherwise, small samples make for not so statically representative ratings.
trends (the time variable)
At the risk of complicating the model, consider keeping [some] record of when votes/view happened, to allow identifying "hot" (and "cooling") movies in the collection. This info may inform the rating logic, but also may be used to direct the users towards currently hot items. BTW, hence feeding the bandwagon effect mentioned :-( but also, increasing the voting sample size :-).
All these considerations suggest caution in implementing this rating system. It also hints at the likely need of including statistics about the complete set of movies into the rating formula for an individual movie. In other words, do not rate a given movie solely on the basis of the its own vote/view counts but also on say the average vote counts a move receives, the maximum view a movie page gets etc. In fact, an iterative process, whereby movies are [roughly] ranked at first and then the ranking is recalculated by using the statistics of groups of movies similarly rated may provide a better system (provided the formulas are "fair" and somehow converge)
A standard trick is to start with a neutral baseline: say 10 likes and 10 dislikes that gives a score of 1. The first few votes don't change the ratio too much, but as votes accumulate, the baseline is overwhelmed. The exact choice of the baseline values will influence the rating of a new movie (the two values don't have to be equal), and how many votes are needed to change the rating substantially.