R interpolated polar contour plot - r

I'm attempting to script a contour polar plot in R from interpolated point data. In other words, I have data in polar coordinates with a magnitude value I would like to plot and show interpolated values. I'd like to mass produce plots similar to the following (produced in OriginPro):
My closest attempt in R to this point is basically:
### Convert polar -> cart
# ToDo #
### Dummy data
x = rnorm(20)
y = rnorm(20)
z = rnorm(20)
### Interpolate
library(akima)
tmp = interp(x,y,z)
### Plot interpolation
library(fields)
image.plot(tmp)
### ToDo ###
#Turn off all axis
#Plot polar axis ontop
Which produces something like:
While this is obviously not going to be the final product, is this the best way to go about creating contour polar plots in R?
I can't find anything on the topic other than an archive mailing list dicussion from 2008. I guess I'm not fully dedicated to using R for the plots (though that is where I have the data), but I am opposed to manual creation. So, if there is another language with this capability, please suggest it (I did see the Python example).
EDIT
Regarding the suggestion using ggplot2 - I can't seem to get the geom_tile routine to plot interpolated data in polar_coordinates. I have included code below that illustrates where I'm at. I can plot the original in Cartesian and polar, but I can only get the interpolated data to plot in Cartesian. I can plot the interpolation points in polar using geom_point, but I can't extend that approach to geom_tile. My only guess was that this is related to data order - i.e. geom_tile is expecting sorted/ordered data - I've tried every iteration I can think of sorting the data into ascending/descending azimuth and zenith with no change.
## Libs
library(akima)
library(ggplot2)
## Sample data in az/el(zenith)
tmp = seq(5,355,by=10)
geoms <- data.frame(az = tmp,
zen = runif(length(tmp)),
value = runif(length(tmp)))
geoms$az_rad = geoms$az*pi/180
## These points plot fine
ggplot(geoms)+geom_point(aes(az,zen,colour=value))+
coord_polar()+
scale_x_continuous(breaks=c(0,45,90,135,180,225,270,315,360),limits=c(0,360))+
scale_colour_gradient(breaks=seq(0,1,by=.1),low="black",high="white")
## Need to interpolate - most easily done in cartesian
x = geoms$zen*sin(geoms$az_rad)
y = geoms$zen*cos(geoms$az_rad)
df.ptsc = data.frame(x=x,y=y,z=geoms$value)
intc = interp(x,y,geoms$value,
xo=seq(min(x), max(x), length = 100),
yo=seq(min(y), max(y), length = 100),linear=FALSE)
df.intc = data.frame(expand.grid(x=intc$x,y=intc$y),
z=c(intc$z),value=cut((intc$z),breaks=seq(0,1,.1)))
## This plots fine in cartesian coords
ggplot(df.intc)+scale_x_continuous(limits=c(-1.1,1.1))+
scale_y_continuous(limits=c(-1.1,1.1))+
geom_point(data=df.ptsc,aes(x,y,colour=z))+
scale_colour_gradient(breaks=seq(0,1,by=.1),low="white",high="red")
ggplot(df.intc)+geom_tile(aes(x,y,fill=z))+
scale_x_continuous(limits=c(-1.1,1.1))+
scale_y_continuous(limits=c(-1.1,1.1))+
geom_point(data=df.ptsc,aes(x,y,colour=z))+
scale_colour_gradient(breaks=seq(0,1,by=.1),low="white",high="red")
## Convert back to polar
int_az = atan2(df.intc$x,df.intc$y)
int_az = int_az*180/pi
int_az = unlist(lapply(int_az,function(x){if(x<0){x+360}else{x}}))
int_zen = sqrt(df.intc$x^2+df.intc$y^2)
df.intp = data.frame(az=int_az,zen=int_zen,z=df.intc$z,value=df.intc$value)
## Just to check
az = atan2(x,y)
az = az*180/pi
az = unlist(lapply(az,function(x){if(x<0){x+360}else{x}}))
zen = sqrt(x^2+y^2)
## The conversion looks correct [[az = geoms$az, zen = geoms$zen]]
## This plots the interpolated locations
ggplot(df.intp)+geom_point(aes(az,zen))+coord_polar()
## This doesn't track to geom_tile
ggplot(df.intp)+geom_tile(aes(az,zen,fill=value))+coord_polar()
Final Results
I finally took code from the accepted answer (base graphics) and updated the code. I added a thin plate spline interpolation method, an option to extrapolate or not, data point overlays, and the ability to do continuous colors or segmented colors for the interpolated surface. See the examples below.
PolarImageInterpolate <- function(
### Plotting data (in cartesian) - will be converted to polar space.
x, y, z,
### Plot component flags
contours=TRUE, # Add contours to the plotted surface
legend=TRUE, # Plot a surface data legend?
axes=TRUE, # Plot axes?
points=TRUE, # Plot individual data points
extrapolate=FALSE, # Should we extrapolate outside data points?
### Data splitting params for color scale and contours
col_breaks_source = 1, # Where to calculate the color brakes from (1=data,2=surface)
# If you know the levels, input directly (i.e. c(0,1))
col_levels = 10, # Number of color levels to use - must match length(col) if
#col specified separately
col = rev(heat.colors(col_levels)), # Colors to plot
contour_breaks_source = 1, # 1=z data, 2=calculated surface data
# If you know the levels, input directly (i.e. c(0,1))
contour_levels = col_levels+1, # One more contour break than col_levels (must be
# specified correctly if done manually
### Plotting params
outer.radius = round_any(max(sqrt(x^2+y^2)),5,f=ceiling),
circle.rads = pretty(c(0,outer.radius)), #Radius lines
spatial_res=1000, #Resolution of fitted surface
single_point_overlay=0, #Overlay "key" data point with square
#(0 = No, Other = number of pt)
### Fitting parameters
interp.type = 1, #1 = linear, 2 = Thin plate spline
lambda=0){ #Used only when interp.type = 2
minitics <- seq(-outer.radius, outer.radius, length.out = spatial_res)
# interpolate the data
if (interp.type ==1 ){
Interp <- akima:::interp(x = x, y = y, z = z,
extrap = extrapolate,
xo = minitics,
yo = minitics,
linear = FALSE)
Mat <- Interp[[3]]
}
else if (interp.type == 2){
library(fields)
grid.list = list(x=minitics,y=minitics)
t = Tps(cbind(x,y),z,lambda=lambda)
tmp = predict.surface(t,grid.list,extrap=extrapolate)
Mat = tmp$z
}
else {stop("interp.type value not valid")}
# mark cells outside circle as NA
markNA <- matrix(minitics, ncol = spatial_res, nrow = spatial_res)
Mat[!sqrt(markNA ^ 2 + t(markNA) ^ 2) < outer.radius] <- NA
### Set contour_breaks based on requested source
if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 1)){
contour_breaks = seq(min(z,na.rm=TRUE),max(z,na.rm=TRUE),
by=(max(z,na.rm=TRUE)-min(z,na.rm=TRUE))/(contour_levels-1))
}
else if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 2)){
contour_breaks = seq(min(Mat,na.rm=TRUE),max(Mat,na.rm=TRUE),
by=(max(Mat,na.rm=TRUE)-min(Mat,na.rm=TRUE))/(contour_levels-1))
}
else if ((length(contour_breaks_source) == 2) & (is.numeric(contour_breaks_source))){
contour_breaks = pretty(contour_breaks_source,n=contour_levels)
contour_breaks = seq(contour_breaks_source[1],contour_breaks_source[2],
by=(contour_breaks_source[2]-contour_breaks_source[1])/(contour_levels-1))
}
else {stop("Invalid selection for \"contour_breaks_source\"")}
### Set color breaks based on requested source
if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 1))
{zlim=c(min(z,na.rm=TRUE),max(z,na.rm=TRUE))}
else if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 2))
{zlim=c(min(Mat,na.rm=TRUE),max(Mat,na.rm=TRUE))}
else if ((length(col_breaks_source) == 2) & (is.numeric(col_breaks_source)))
{zlim=col_breaks_source}
else {stop("Invalid selection for \"col_breaks_source\"")}
# begin plot
Mat_plot = Mat
Mat_plot[which(Mat_plot<zlim[1])]=zlim[1]
Mat_plot[which(Mat_plot>zlim[2])]=zlim[2]
image(x = minitics, y = minitics, Mat_plot , useRaster = TRUE, asp = 1, axes = FALSE, xlab = "", ylab = "", zlim = zlim, col = col)
# add contours if desired
if (contours){
CL <- contourLines(x = minitics, y = minitics, Mat, levels = contour_breaks)
A <- lapply(CL, function(xy){
lines(xy$x, xy$y, col = gray(.2), lwd = .5)
})
}
# add interpolated point if desired
if (points){
points(x,y,pch=4)
}
# add overlay point (used for trained image marking) if desired
if (single_point_overlay!=0){
points(x[single_point_overlay],y[single_point_overlay],pch=0)
}
# add radial axes if desired
if (axes){
# internals for axis markup
RMat <- function(radians){
matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
}
circle <- function(x, y, rad = 1, nvert = 500){
rads <- seq(0,2*pi,length.out = nvert)
xcoords <- cos(rads) * rad + x
ycoords <- sin(rads) * rad + y
cbind(xcoords, ycoords)
}
# draw circles
if (missing(circle.rads)){
circle.rads <- pretty(c(0,outer.radius))
}
for (i in circle.rads){
lines(circle(0, 0, i), col = "#66666650")
}
# put on radial spoke axes:
axis.rads <- c(0, pi / 6, pi / 3, pi / 2, 2 * pi / 3, 5 * pi / 6)
r.labs <- c(90, 60, 30, 0, 330, 300)
l.labs <- c(270, 240, 210, 180, 150, 120)
for (i in 1:length(axis.rads)){
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0) * outer.radius,ncol = 2)))
segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
lab1 <- bquote(.(r.labs[i]) * degree)
lab2 <- bquote(.(l.labs[i]) * degree)
text(endpoints[1], endpoints[2], lab1, xpd = TRUE)
text(endpoints[3], endpoints[4], lab2, xpd = TRUE)
}
axis(2, pos = -1.25 * outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
text( -1.26 * outer.radius, sort(union(circle.rads, -circle.rads)),sort(union(circle.rads, -circle.rads)), xpd = TRUE, pos = 2)
}
# add legend if desired
# this could be sloppy if there are lots of breaks, and that's why it's optional.
# another option would be to use fields:::image.plot(), using only the legend.
# There's an example for how to do so in its documentation
if (legend){
library(fields)
image.plot(legend.only=TRUE, smallplot=c(.78,.82,.1,.8), col=col, zlim=zlim)
# ylevs <- seq(-outer.radius, outer.radius, length = contour_levels+ 1)
# #ylevs <- seq(-outer.radius, outer.radius, length = length(contour_breaks))
# rect(1.2 * outer.radius, ylevs[1:(length(ylevs) - 1)], 1.3 * outer.radius, ylevs[2:length(ylevs)], col = col, border = NA, xpd = TRUE)
# rect(1.2 * outer.radius, min(ylevs), 1.3 * outer.radius, max(ylevs), border = "#66666650", xpd = TRUE)
# text(1.3 * outer.radius, ylevs[seq(1,length(ylevs),length.out=length(contour_breaks))],round(contour_breaks, 1), pos = 4, xpd = TRUE)
}
}

[[major edit]]
I was finally able to add contour lines to my original attempt, but since the two sides of the original matrix that gets contorted don't actually touch, the lines don't match up between 360 and 0 degree. So I've totally rethought the problem, but leave the original post below because it was still kind of cool to plot a matrix that way. The function I'm posting now takes x,y,z and several optional arguments, and spits back something pretty darn similar to your desired examples, radial axes, legend, contour lines and all:
PolarImageInterpolate <- function(x, y, z, outer.radius = 1,
breaks, col, nlevels = 20, contours = TRUE, legend = TRUE,
axes = TRUE, circle.rads = pretty(c(0,outer.radius))){
minitics <- seq(-outer.radius, outer.radius, length.out = 1000)
# interpolate the data
Interp <- akima:::interp(x = x, y = y, z = z,
extrap = TRUE,
xo = minitics,
yo = minitics,
linear = FALSE)
Mat <- Interp[[3]]
# mark cells outside circle as NA
markNA <- matrix(minitics, ncol = 1000, nrow = 1000)
Mat[!sqrt(markNA ^ 2 + t(markNA) ^ 2) < outer.radius] <- NA
# sort out colors and breaks:
if (!missing(breaks) & !missing(col)){
if (length(breaks) - length(col) != 1){
stop("breaks must be 1 element longer than cols")
}
}
if (missing(breaks) & !missing(col)){
breaks <- seq(min(Mat,na.rm = TRUE), max(Mat, na.rm = TRUE), length = length(col) + 1)
nlevels <- length(breaks) - 1
}
if (missing(col) & !missing(breaks)){
col <- rev(heat.colors(length(breaks) - 1))
nlevels <- length(breaks) - 1
}
if (missing(breaks) & missing(col)){
breaks <- seq(min(Mat,na.rm = TRUE), max(Mat, na.rm = TRUE), length = nlevels + 1)
col <- rev(heat.colors(nlevels))
}
# if legend desired, it goes on the right and some space is needed
if (legend) {
par(mai = c(1,1,1.5,1.5))
}
# begin plot
image(x = minitics, y = minitics, t(Mat), useRaster = TRUE, asp = 1,
axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks)
# add contours if desired
if (contours){
CL <- contourLines(x = minitics, y = minitics, t(Mat), levels = breaks)
A <- lapply(CL, function(xy){
lines(xy$x, xy$y, col = gray(.2), lwd = .5)
})
}
# add radial axes if desired
if (axes){
# internals for axis markup
RMat <- function(radians){
matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
}
circle <- function(x, y, rad = 1, nvert = 500){
rads <- seq(0,2*pi,length.out = nvert)
xcoords <- cos(rads) * rad + x
ycoords <- sin(rads) * rad + y
cbind(xcoords, ycoords)
}
# draw circles
if (missing(circle.rads)){
circle.rads <- pretty(c(0,outer.radius))
}
for (i in circle.rads){
lines(circle(0, 0, i), col = "#66666650")
}
# put on radial spoke axes:
axis.rads <- c(0, pi / 6, pi / 3, pi / 2, 2 * pi / 3, 5 * pi / 6)
r.labs <- c(90, 60, 30, 0, 330, 300)
l.labs <- c(270, 240, 210, 180, 150, 120)
for (i in 1:length(axis.rads)){
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0) * outer.radius,ncol = 2)))
segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
lab1 <- bquote(.(r.labs[i]) * degree)
lab2 <- bquote(.(l.labs[i]) * degree)
text(endpoints[1], endpoints[2], lab1, xpd = TRUE)
text(endpoints[3], endpoints[4], lab2, xpd = TRUE)
}
axis(2, pos = -1.2 * outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
text( -1.21 * outer.radius, sort(union(circle.rads, -circle.rads)),sort(union(circle.rads, -circle.rads)), xpd = TRUE, pos = 2)
}
# add legend if desired
# this could be sloppy if there are lots of breaks, and that's why it's optional.
# another option would be to use fields:::image.plot(), using only the legend.
# There's an example for how to do so in its documentation
if (legend){
ylevs <- seq(-outer.radius, outer.radius, length = nlevels + 1)
rect(1.2 * outer.radius, ylevs[1:(length(ylevs) - 1)], 1.3 * outer.radius, ylevs[2:length(ylevs)], col = col, border = NA, xpd = TRUE)
rect(1.2 * outer.radius, min(ylevs), 1.3 * outer.radius, max(ylevs), border = "#66666650", xpd = TRUE)
text(1.3 * outer.radius, ylevs,round(breaks, 1), pos = 4, xpd = TRUE)
}
}
# Example
set.seed(10)
x <- rnorm(20)
y <- rnorm(20)
z <- rnorm(20)
PolarImageInterpolate(x,y,z, breaks = seq(-2,8,by = 1))
code available here: https://gist.github.com/2893780
[[my original answer follows]]
I thought your question would be educational for myself, so I took up the challenge and came up with the following incomplete function. It works similar to image(), wants a matrix as its primary input, and spits back something similar to your example above, minus the contour lines.
[[I edited the code June 6th after noticing that it didn't plot in the order I claimed. Fixed. Currently working on contour lines and legend.]]
# arguments:
# Mat, a matrix of z values as follows:
# leftmost edge of first column = 0 degrees, rightmost edge of last column = 360 degrees
# columns are distributed in cells equally over the range 0 to 360 degrees, like a grid prior to transform
# first row is innermost circle, last row is outermost circle
# outer.radius, By default everything scaled to unit circle
# ppa: points per cell per arc. If your matrix is little, make it larger for a nice curve
# cols: color vector. default = rev(heat.colors(length(breaks)-1))
# breaks: manual breaks for colors. defaults to seq(min(Mat),max(Mat),length=nbreaks)
# nbreaks: how many color levels are desired?
# axes: should circular and radial axes be drawn? radial axes are drawn at 30 degree intervals only- this could be made more flexible.
# circle.rads: at which radii should circles be drawn? defaults to pretty(((0:ncol(Mat)) / ncol(Mat)) * outer.radius)
# TODO: add color strip legend.
PolarImagePlot <- function(Mat, outer.radius = 1, ppa = 5, cols, breaks, nbreaks = 51, axes = TRUE, circle.rads){
# the image prep
Mat <- Mat[, ncol(Mat):1]
radii <- ((0:ncol(Mat)) / ncol(Mat)) * outer.radius
# 5 points per arc will usually do
Npts <- ppa
# all the angles for which a vertex is needed
radians <- 2 * pi * (0:(nrow(Mat) * Npts)) / (nrow(Mat) * Npts) + pi / 2
# matrix where each row is the arc corresponding to a cell
rad.mat <- matrix(radians[-length(radians)], ncol = Npts, byrow = TRUE)[1:nrow(Mat), ]
rad.mat <- cbind(rad.mat, rad.mat[c(2:nrow(rad.mat), 1), 1])
# the x and y coords assuming radius of 1
y0 <- sin(rad.mat)
x0 <- cos(rad.mat)
# dimension markers
nc <- ncol(x0)
nr <- nrow(x0)
nl <- length(radii)
# make a copy for each radii, redimension in sick ways
x1 <- aperm( x0 %o% radii, c(1, 3, 2))
# the same, but coming back the other direction to close the polygon
x2 <- x1[, , nc:1]
#now stick together
x.array <- abind:::abind(x1[, 1:(nl - 1), ], x2[, 2:nl, ], matrix(NA, ncol = (nl - 1), nrow = nr), along = 3)
# final product, xcoords, is a single vector, in order,
# where all the x coordinates for a cell are arranged
# clockwise. cells are separated by NAs- allows a single call to polygon()
xcoords <- aperm(x.array, c(3, 1, 2))
dim(xcoords) <- c(NULL)
# repeat for y coordinates
y1 <- aperm( y0 %o% radii,c(1, 3, 2))
y2 <- y1[, , nc:1]
y.array <- abind:::abind(y1[, 1:(length(radii) - 1), ], y2[, 2:length(radii), ], matrix(NA, ncol = (length(radii) - 1), nrow = nr), along = 3)
ycoords <- aperm(y.array, c(3, 1, 2))
dim(ycoords) <- c(NULL)
# sort out colors and breaks:
if (!missing(breaks) & !missing(cols)){
if (length(breaks) - length(cols) != 1){
stop("breaks must be 1 element longer than cols")
}
}
if (missing(breaks) & !missing(cols)){
breaks <- seq(min(Mat,na.rm = TRUE), max(Mat, na.rm = TRUE), length = length(cols) + 1)
}
if (missing(cols) & !missing(breaks)){
cols <- rev(heat.colors(length(breaks) - 1))
}
if (missing(breaks) & missing(cols)){
breaks <- seq(min(Mat,na.rm = TRUE), max(Mat, na.rm = TRUE), length = nbreaks)
cols <- rev(heat.colors(length(breaks) - 1))
}
# get a color for each cell. Ugly, but it gets them in the right order
cell.cols <- as.character(cut(as.vector(Mat[nrow(Mat):1,ncol(Mat):1]), breaks = breaks, labels = cols))
# start empty plot
plot(NULL, type = "n", ylim = c(-1, 1) * outer.radius, xlim = c(-1, 1) * outer.radius, asp = 1, axes = FALSE, xlab = "", ylab = "")
# draw polygons with no borders:
polygon(xcoords, ycoords, col = cell.cols, border = NA)
if (axes){
# a couple internals for axis markup.
RMat <- function(radians){
matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
}
circle <- function(x, y, rad = 1, nvert = 500){
rads <- seq(0,2*pi,length.out = nvert)
xcoords <- cos(rads) * rad + x
ycoords <- sin(rads) * rad + y
cbind(xcoords, ycoords)
}
# draw circles
if (missing(circle.rads)){
circle.rads <- pretty(radii)
}
for (i in circle.rads){
lines(circle(0, 0, i), col = "#66666650")
}
# put on radial spoke axes:
axis.rads <- c(0, pi / 6, pi / 3, pi / 2, 2 * pi / 3, 5 * pi / 6)
r.labs <- c(90, 60, 30, 0, 330, 300)
l.labs <- c(270, 240, 210, 180, 150, 120)
for (i in 1:length(axis.rads)){
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0) * outer.radius,ncol = 2)))
segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
lab1 <- bquote(.(r.labs[i]) * degree)
lab2 <- bquote(.(l.labs[i]) * degree)
text(endpoints[1], endpoints[2], lab1, xpd = TRUE)
text(endpoints[3], endpoints[4], lab2, xpd = TRUE)
}
axis(2, pos = -1.2 * outer.radius, at = sort(union(circle.rads,-circle.rads)))
}
invisible(list(breaks = breaks, col = cols))
}
I don't know how to interpolate properly over a polar surface, so assuming you can achieve that and get your data into a matrix, then this function will get it plotted for you. Each cell is drawn, as with image(), but the interior ones are teeny tiny. Here's an example:
set.seed(1)
x <- runif(20, min = 0, max = 360)
y <- runif(20, min = 0, max = 40)
z <- rnorm(20)
Interp <- akima:::interp(x = x, y = y, z = z,
extrap = TRUE,
xo = seq(0, 360, length.out = 300),
yo = seq(0, 40, length.out = 100),
linear = FALSE)
Mat <- Interp[[3]]
PolarImagePlot(Mat)
By all means, feel free to modify this and do with it what you will. Code is available on Github here: https://gist.github.com/2877281

Target Plot
Example Code
library(akima)
library(ggplot2)
x = rnorm(20)
y = rnorm(20)
z = rnorm(20)
t. = interp(x,y,z)
t.df <- data.frame(t.)
gt <- data.frame( expand.grid(X1=t.$x,
X2=t.$y),
z=c(t.$z),
value=cut(c(t.$z),
breaks=seq(-1,1,0.25)))
p <- ggplot(gt) +
geom_tile(aes(X1,X2,fill=value)) +
geom_contour(aes(x=X1,y=X2,z=z), colour="black") +
coord_polar()
p <- p + scale_fill_brewer()
p
ggplot2 then has many options to explore re colour scales, annotations etc. but this should get you started.
Credit to this answer by Andrie de Vries that got me to this solution.

Related

Understanding "levels" in r contour function of bivariate distribution

I have trouble understanding how to set the levels in the plot of a bivariate distribution in r. The documentation states that I can choose the levels by setting a
numeric vector of levels at which to draw contour lines
Now I would like the contour to show the limit containing 95% of the density or mass. But if, in the example below (adapted from here) I set the vector as a <- c(.95,.90) the code runs without error but the plot is not displayed. If instead, I set the vector as a <- c(.01,.05) the plot is displayed. But I am not sure I understand what the labels "0.01" and "0.05" mean with respect to the density.
library(mnormt)
x <- seq(-5, 5, 0.25)
y <- seq(-5, 5, 0.25)
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
f <- function(x, y) dmnorm(cbind(x, y), mu1, sigma1)
z <- outer(x, y, f)
a <- c(.01,.05)
contour(x, y, z, levels = a)
But I am not sure I understand what the labels "0.01" and "0.05" mean with respect to the density.
It means the points where the density is equal 0.01 and 0.05. From help("contour"):
numeric vector of levels at which to draw contour lines.
So it is the function values at which to draw the lines (contours) where the function is equal to those levels (in this case the density). Take a simple example which may help is x + y:
y <- x <- seq(0, 1, length.out = 50)
z <- outer(x, y, `+`)
par(mar = c(5, 5, 1, 1))
contour(x, y, z, levels = c(0.5, 1, 1.5))
Now I would like the contour to show the limit containing 95% of the density or mass.
In your example, you can follow my answer here and draw the exact points:
# input
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
# we start from points on the unit circle
n_points <- 100
xy <- cbind(sin(seq(0, 2 * pi, length.out = n_points)),
cos(seq(0, 2 * pi, length.out = n_points)))
# then we scale the dimensions
ev <- eigen(sigma1)
xy[, 1] <- xy[, 1] * 1
xy[, 2] <- xy[, 2] * sqrt(min(ev$values) / max(ev$values))
# then rotate
phi <- atan(ev$vectors[2, 1] / ev$vectors[1, 1])
R <- matrix(c(cos(phi), sin(phi), -sin(phi), cos(phi)), 2)
xy <- tcrossprod(R, xy)
# find the right length. You can change .95 to which ever
# quantile you want
chi_vals <- qchisq(.95, df = 2) * max(ev$values)
s <- sqrt(chi_vals)
par(mar = c(5, 5, 1, 1))
plot(s * xy[1, ] + mu1[1], s * xy[2, ] + mu1[2], lty = 1,
type = "l", xlab = "x", ylab = "y")
The levels indicates where the lines are drawn, with respect to the specific 'z' value of the bivariate normal density. Since max(z) is
0.09188815, levels of a <- c(.95,.90) can't be drawn.
To draw the line delimiting 95% of the mass I used the ellipse() function as suggested in this post (second answer from the top).
library(mixtools)
library(mnormt)
x <- seq(-5, 5, 0.25)
y <- seq(-5, 5, 0.25)
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
f <- function(x, y) dmnorm(cbind(x, y), mu1, sigma1)
z <- outer(x, y, f)
a <- c(.01,.05)
contour(x, y, z, levels = a)
ellipse(mu=mu1, sigma=sigma1, alpha = .05, npoints = 250, col="red")
I also found another solution in the book "Applied Multivariate Statistics with R" by Daniel Zelterman.
# Figure 6.5: Bivariate confidence ellipse
library(datasets)
library(MASS)
library(MVA)
#> Loading required package: HSAUR2
#> Loading required package: tools
biv <- swiss[, 2 : 3] # Extract bivariate data
bivCI <- function(s, xbar, n, alpha, m)
# returns m (x,y) coordinates of 1-alpha joint confidence ellipse of mean
{
x <- sin( 2* pi * (0 : (m - 1) )/ (m - 1)) # m points on a unit circle
y <- cos( 2* pi * (0 : (m - 1)) / (m - 1))
cv <- qchisq(1 - alpha, 2) # chisquared critical value
cv <- cv / n # value of quadratic form
for (i in 1 : m)
{
pair <- c(x[i], y[i]) # ith (x,y) pair
q <- pair %*% solve(s, pair) # quadratic form
x[i] <- x[i] * sqrt(cv / q) + xbar[1]
y[i] <- y[i] * sqrt(cv / q) + xbar[2]
}
return(cbind(x, y))
}
### pdf(file = "bivSwiss.pdf")
plot(biv, col = "red", pch = 16, cex.lab = 1.5)
lines(bivCI(var(biv), colMeans(biv), dim(biv)[1], .01, 1000), type = "l",
col = "blue")
lines(bivCI(var(biv), colMeans(biv), dim(biv)[1], .05, 1000),
type = "l", col = "green", lwd = 1)
lines(colMeans(biv)[1], colMeans(biv)[2], pch = 3, cex = .8, type = "p",
lwd = 1)
Created on 2021-03-15 by the reprex package (v0.3.0)

Show dendrogram node values in R

I am using the hclust function:
points <- data.frame(ID = c('A','B','C','D','E'),
x = c(3,4,2.1,4,7),
y = c(6.1,2,5,6,3))
d <- dist(as.matrix(points[, 2:3]))
clusters <- hclust(d,method = "complete")
plot(clusters, labels=points$ID)
Is there a way to show the values where the points are joined (or the node values (where the dissimilarity between the samples is minimal))?
I want my plot to look like the one on the picture.
Note: The values showed on the dendrogram are not the correct ones.
My R package TBEST has a function that can add two color annotations to a hclust object. For your convenience, I am pasting codes below, so you can use them independent of any packages.
hc2axes<-function (x) {
A <- x$merge
n <- nrow(A) + 1
x.axis <- c()
y.axis <- x$height
x.tmp <- rep(0, 2)
zz <- match(1:length(x$order), x$order)
for (i in 1:(n - 1)) {
ai <- A[i, 1]
if (ai < 0)
x.tmp[1] <- zz[-ai]
else x.tmp[1] <- x.axis[ai]
ai <- A[i, 2]
if (ai < 0)
x.tmp[2] <- zz[-ai]
else x.tmp[2] <- x.axis[ai]
x.axis[i] <- mean(x.tmp)
}
return(data.frame(x.axis = x.axis, y.axis = y.axis))
}
plot_height<-function (hc, height, col = c(2, 3), print.num = TRUE, float = 0.01, cex = NULL, font = NULL)
{
axes <- hc2axes(hc)
usr <- par()$usr
wid <- usr[4] - usr[3]
bp <- as.character(round(height,2))
rn <- as.character(1:length(height))
bp[length(bp)] <- "height"
rn[length(rn)] <- "edge #"
a <- text(x = axes[, 1], y = axes[, 2] + float * wid, bp,
col = col[1], pos = 2, offset = 0.3, cex = cex, font = font)
if (print.num) {
a <- text(x = axes[, 1], y = axes[, 2], rn, col = col[2],
pos = 4, offset = 0.3, cex = cex, font = font)
}
}
Once you paste these two functions, add one line to plot your dendrogram,
plot(clusters,labels=points$ID);
cluster_height(clusters,height=clusters$height,print.num=F)
You can also plot the branch numbers by setting print.num=T
Here's one method using the dendextend package.
First, convert to hanging dendrogram
library(dendextend)
dend <- as.dendrogram(clusters) %>% hang.dendrogram()
dend <- dend %>% set_labels(points$ID[dend %>% labels()])
Now we find the x,y values for all the internal nodes
xy <- dend %>% get_nodes_xy()
is_internal_node <- is.na(dend %>% get_nodes_attr("leaf"))
is_internal_node[which.max(xy[,2])] <- FALSE
xy <- xy[is_internal_node,]
And now we plot the dendrogram and draw the labels at a slight offset
plot(dend)
text(xy[,1]+.2, xy[,2]+.2, labels=format(xy[,2], digits=2), col="red")
This gives the following plot

Fix interpolated polar contour plot function to works with current R and (possibly) use ggplot

The question R interpolated polar contour plot shows an excellent way to produce interpolated polar plots in R. I include the very slightly modified version I'm using:
PolarImageInterpolate <- function(
### Plotting data (in cartesian) - will be converted to polar space.
x, y, z,
### Plot component flags
contours=TRUE, # Add contours to the plotted surface
legend=TRUE, # Plot a surface data legend?
axes=TRUE, # Plot axes?
points=TRUE, # Plot individual data points
extrapolate=FALSE, # Should we extrapolate outside data points?
### Data splitting params for color scale and contours
col_breaks_source = 1, # Where to calculate the color brakes from (1=data,2=surface)
# If you know the levels, input directly (i.e. c(0,1))
col_levels = 10, # Number of color levels to use - must match length(col) if
#col specified separately
col = rev(heat.colors(col_levels)), # Colors to plot
# col = rev(heat.colors(col_levels)), # Colors to plot
contour_breaks_source = 1, # 1=z data, 2=calculated surface data
# If you know the levels, input directly (i.e. c(0,1))
contour_levels = col_levels+1, # One more contour break than col_levels (must be
# specified correctly if done manually
### Plotting params
outer.radius = ceiling(max(sqrt(x^2+y^2))),
circle.rads = pretty(c(0,outer.radius)), #Radius lines
spatial_res=1000, #Resolution of fitted surface
single_point_overlay=0, #Overlay "key" data point with square
#(0 = No, Other = number of pt)
### Fitting parameters
interp.type = 1, #1 = linear, 2 = Thin plate spline
lambda=0){ #Used only when interp.type = 2
minitics <- seq(-outer.radius, outer.radius, length.out = spatial_res)
# interpolate the data
if (interp.type ==1 ){
Interp <- akima:::interp(x = x, y = y, z = z,
extrap = extrapolate,
xo = minitics,
yo = minitics,
linear = FALSE)
Mat <- Interp[[3]]
}
else if (interp.type == 2){
library(fields)
grid.list = list(x=minitics,y=minitics)
t = Tps(cbind(x,y),z,lambda=lambda)
tmp = predict.surface(t,grid.list,extrap=extrapolate)
Mat = tmp$z
}
else {stop("interp.type value not valid")}
# mark cells outside circle as NA
markNA <- matrix(minitics, ncol = spatial_res, nrow = spatial_res)
Mat[!sqrt(markNA ^ 2 + t(markNA) ^ 2) < outer.radius] <- NA
### Set contour_breaks based on requested source
if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 1)){
contour_breaks = seq(min(z,na.rm=TRUE),max(z,na.rm=TRUE),
by=(max(z,na.rm=TRUE)-min(z,na.rm=TRUE))/(contour_levels-1))
}
else if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 2)){
contour_breaks = seq(min(Mat,na.rm=TRUE),max(Mat,na.rm=TRUE),
by=(max(Mat,na.rm=TRUE)-min(Mat,na.rm=TRUE))/(contour_levels-1))
}
else if ((length(contour_breaks_source) == 2) & (is.numeric(contour_breaks_source))){
contour_breaks = pretty(contour_breaks_source,n=contour_levels)
contour_breaks = seq(contour_breaks_source[1],contour_breaks_source[2],
by=(contour_breaks_source[2]-contour_breaks_source[1])/(contour_levels-1))
}
else {stop("Invalid selection for \"contour_breaks_source\"")}
### Set color breaks based on requested source
if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 1))
{zlim=c(min(z,na.rm=TRUE),max(z,na.rm=TRUE))}
else if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 2))
{zlim=c(min(Mat,na.rm=TRUE),max(Mat,na.rm=TRUE))}
else if ((length(col_breaks_source) == 2) & (is.numeric(col_breaks_source)))
{zlim=col_breaks_source}
else {stop("Invalid selection for \"col_breaks_source\"")}
# begin plot
Mat_plot = Mat
Mat_plot[which(Mat_plot<zlim[1])]=zlim[1]
Mat_plot[which(Mat_plot>zlim[2])]=zlim[2]
image(x = minitics, y = minitics, Mat_plot , useRaster = TRUE, asp = 1, axes = FALSE, xlab = "", ylab = "", zlim = zlim, col = col)
# add contours if desired
if (contours){
CL <- contourLines(x = minitics, y = minitics, Mat, levels = contour_breaks)
A <- lapply(CL, function(xy){
lines(xy$x, xy$y, col = gray(.2), lwd = .5)
})
}
# add interpolated point if desired
if (points){
points(x, y, pch = 21, bg ="blue")
}
# add overlay point (used for trained image marking) if desired
if (single_point_overlay!=0){
points(x[single_point_overlay],y[single_point_overlay],pch=0)
}
# add radial axes if desired
if (axes){
# internals for axis markup
RMat <- function(radians){
matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
}
circle <- function(x, y, rad = 1, nvert = 500){
rads <- seq(0,2*pi,length.out = nvert)
xcoords <- cos(rads) * rad + x
ycoords <- sin(rads) * rad + y
cbind(xcoords, ycoords)
}
# draw circles
if (missing(circle.rads)){
circle.rads <- pretty(c(0,outer.radius))
}
for (i in circle.rads){
lines(circle(0, 0, i), col = "#66666650")
}
# put on radial spoke axes:
axis.rads <- c(0, pi / 6, pi / 3, pi / 2, 2 * pi / 3, 5 * pi / 6)
r.labs <- c(90, 60, 30, 0, 330, 300)
l.labs <- c(270, 240, 210, 180, 150, 120)
for (i in 1:length(axis.rads)){
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0) * outer.radius,ncol = 2)))
segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
lab1 <- bquote(.(r.labs[i]) * degree)
lab2 <- bquote(.(l.labs[i]) * degree)
text(endpoints[1], endpoints[2], lab1, xpd = TRUE)
text(endpoints[3], endpoints[4], lab2, xpd = TRUE)
}
axis(2, pos = -1.25 * outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
text( -1.26 * outer.radius, sort(union(circle.rads, -circle.rads)),sort(union(circle.rads, -circle.rads)), xpd = TRUE, pos = 2)
}
# add legend if desired
# this could be sloppy if there are lots of breaks, and that's why it's optional.
# another option would be to use fields:::image.plot(), using only the legend.
# There's an example for how to do so in its documentation
if (legend){
library(fields)
image.plot(legend.only=TRUE, smallplot=c(.78,.82,.1,.8), col=col, zlim=zlim)
# ylevs <- seq(-outer.radius, outer.radius, length = contour_levels+ 1)
# #ylevs <- seq(-outer.radius, outer.radius, length = length(contour_breaks))
# rect(1.2 * outer.radius, ylevs[1:(length(ylevs) - 1)], 1.3 * outer.radius, ylevs[2:length(ylevs)], col = col, border = NA, xpd = TRUE)
# rect(1.2 * outer.radius, min(ylevs), 1.3 * outer.radius, max(ylevs), border = "#66666650", xpd = TRUE)
# text(1.3 * outer.radius, ylevs[seq(1,length(ylevs),length.out=length(contour_breaks))],round(contour_breaks, 1), pos = 4, xpd = TRUE)
}
}
Unfortunately, this function has a few bugs:
a) Even with a purely radial pattern, the produced plot has a distortion whose origin I don't understand:
#example
r <- rep(seq(0.1, 0.9, len = 8), each = 8)
theta <- rep(seq(0, 7/4*pi, by = pi/4), times = 8)
x <- r*sin(theta)
y <- r*cos(theta)
z <- z <- rep(seq(0, 1, len = 8), each = 8)
PolarImageInterpolate(x, y, z)
why the wiggles between 300° and 360°? The z function is constant in theta, so there's no reason why there should be wiggles.
b) After 4 years, some of the packages loaded have been modified and at least one functionality of the function is broken. Setting interp.type = 2 should use thin plate splines for interpolation instead than a basic linear interpolation, but it doesn't work:
> PolarImageInterpolate(x, y, z, interp.type = 2)
Warning:
Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
(GCV) Generalized Cross-Validation
minimum at right endpoint lambda = 9.493563e-06 (eff. df= 60.80002 )
predict.surface is now the function predictSurface
Error in image.default(x = minitics, y = minitics, Mat_plot, useRaster = TRUE, :
'z' must be a matrix
the first message is a warning and doesn't worry me, but the second one is actually an error and prevents me from using thin plate splines. Can you help me solve these two problems?
Also, I'd like to "upgrade" to using ggplot2, so if you can give an answer which does that, it would be great. Otherwise, after the bugs are fixed, I'll try asking a specific question which only asks to modify the function so that it uses ggplot2.
For the ggplot2 solution, here is a start. geom_raster allows interpolation, but does not work for polar coordinates. Instead, you can use geom_tile, though then you may need to do the interpolation yourself before passing the values to ggplot.
Of important note: the example data you gave gives an error when working with geom_raster that I believe is caused by the spacing of the values. Here is an example set that works (note, used this blog as a guide, though it is now outdated):
dat_grid <-
expand.grid(x = seq(0,350,10), y = 0:10)
dat_grid$density <- runif(nrow(dat_grid))
ggplot(dat_grid
, aes(x = x, y = y, fill = density)) +
geom_tile() +
coord_polar() +
scale_x_continuous(breaks = seq(0,360,90)) +
scale_fill_gradient2(low = "white"
, mid = "yellow"
, high = "red3"
, midpoint = 0.5)
If you are working from raw data, you might be able to get ggplot to do the work for you. Here is an example working from raw data. There are a lot of manual tinkering things to do, but it is at least an optional starting point:
polarData <-
data.frame(
theta = runif(10000, 0, 2*pi)
, r = log(abs(rnorm(10000, 0, 10)))
)
toCart <-
data.frame(
x = polarData$r * cos(polarData$theta)
, y = polarData$r * sin(polarData$theta)
)
axisLines <-
data.frame(
x = 0
, y = 0
, xend = max(polarData$r)*cos(seq(0, 2*pi, pi/4))
, yend = max(polarData$r)*sin(seq(0, 2*pi, pi/4))
, angle = paste(seq(0, 2, 1/4), "pi") )
ticks <-
data.frame(
label = pretty(c(0, max(polarData$r)) )[-1]
)
ggplot(toCart) +
# geom_point(aes(x = x, y = y)) +
stat_density_2d(aes(x = x, y = y
, fill = ..level..)
, geom = "polygon") +
scale_fill_gradient(low = "white"
, high = "red3") +
theme(axis.text = element_blank()
, axis.title = element_blank()
, axis.line = element_blank()
, axis.ticks = element_blank()) +
geom_segment(data = axisLines
, aes(x = x, y = y
, xend = xend
, yend = yend)) +
geom_label(data = axisLines
, aes(x = xend, y = yend, label = angle)) +
geom_label(data = ticks
, aes(x = 0, y = label, label = label))
From an another post, I came to know that the fucnction predict.surface from package fields is deprecated whic is used for interp.type = 2 in PolarImageInterpolate. Instead, a new predictSurface function is introduced, which can be used here.
Example:
r <- rep(seq(0.1, 0.9, len = 8), each = 8)
theta <- rep(seq(0, 7/4*pi, by = pi/4), times = 8)
x <- r*sin(theta)
y <- r*cos(theta)
z <- z <- rep(seq(0, 1, len = 8), each = 8)
PolarImageInterpolate(x, y, z, interp.type = 2)

Spiral Wrapped Text

I saw in LaTeX people wrapping text into a spiral as seen below. I would like to replicate this in R.
I though plotrix's arctext would do this but given enough text it seems to make a circle as seen in the plot (left) below. I can make aspiral line as seen in the plot (right) but can not merge the text and the spiral.
code
txt <- paste(rep("bendy like spaghetti", 10), collapse=" ")
txt2 <- paste(rep("bendy like spaghetti", 20), collapse=" ")
par(mfrow=c(1, 2), mar=rep(.3, 4)+c(0, 0, 1, 0))
library(plotrix)
plot.new()
plot.window(xlim = c(1, 5), ylim = c(2, 4), asp = 1)
arctext(txt, center = c(3, 3), radius = 1.7,
start = 4 * pi / 3, cex = .75, clockwise = FALSE)
title(main = "Arc Text (plotrix)")
theta <- seq(0, 30 * 2 * pi, by = 2 * pi/72)
x <- cos(theta)
y <- sin(theta)
R <- theta/max(theta)
plot.new()
plot.window(xlim = c(-1, 1), ylim = c(-1, 1), asp = 1)
lines(x * R, y * R)
title(main = "A Spiral")
Ideally, the solution would work on n length text, so txt and txt2 above would both make a wrapping spiral but not the same size (txt2 is double the length of txt).
Approaches for grid/ggplot2 and base grapgics are welcomed.
Not perfect but
txt <- paste(rep("bendy like spaghetti", 10), collapse=" ")
txt2 <- paste(rep("bendy like spaghetti", 20), collapse=" ")
tt <- strsplit(txt, '')[[1]]
xx <- 5
par(mfrow = c(1,2), mar = c(0,0,0,0))
plot(-xx:xx, -xx:xx, type = 'n', axes = FALSE, ann = FALSE)
## option 1
r <- rev(seq(0, xx, length.out = length(tt)))
x <- sqrt(r) * cos(2 * pi * r)
y <- sqrt(r) * sin(2 * pi * r)
text(x, y, tt)
## option 2
plot(-xx:xx, -xx:xx, type = 'n', axes = FALSE, ann = FALSE)
srt <- atan2(y, x) * 180 / pi
for (ii in seq_along(tt))
text(x[ii], y[ii], tt[ii], srt = srt[ii] - 90)
Obviously, the distance between letters shrinks the closer you get to the center, so that can be improved.
Also I don't see how you can get around calling text for each new value of srt using this approach since srt isn't a formal argument meaning you couldn't Vectorize(text.default, vectorize.args = 'srt'), but this isn't very slow for the example data.
Additionally, you could just make the data frame and plug that into ggplot.
dd <- data.frame(x, y, srt = srt - 90, tt)
library('ggplot2')
ggplot(dd, aes(x, y)) + geom_text(label = dd$tt, size = 5)
ggplot(dd, aes(x, y)) + geom_text(label = dd$tt, size = 5, angle = dd$srt)
Using spiralize package:
x = seq(0.1, 0.9, length = 10)
text = rep(paste(letters[1:10], collapse = ""), 10)
spiral_initialize()
spiral_track()
spiral_text(x, 0.5, text, facing = "curved_inside")
Using geomtextpath package, borrowing the example on github:
# install.packages("remotes")
remotes::install_github("AllanCameron/geomtextpath")
library(geomtextpath)
t <- seq(5, -1, length.out = 1000) * pi
spiral <- data.frame(x = sin(t) * 1:1000,
y = cos(t) * 1:1000,
text = paste("Like a circle in a spiral,",
"like a wheel within a wheel,",
"never ending or beginning,",
"on an ever spinning reel")
)
ggplot(spiral, aes(x, y, label = text)) +
geom_textpath(size = 7, vjust = 2, text_only = TRUE) +
coord_equal(xlim = c(-1500, 1500), ylim = c(-1500, 1500))

Aligning contour line with contour filled plot irregular grid polar plot (semi circle)

I see several people have answered the question for plotting with an irregular grid. I'm having trouble getting the contour lines to line up with the filled contours. Also, need to display the data point locations on the plot, and the radial spokes at 30 deg increments, and semi circles at 10, 20 30.
Ref: Plotting contours on an irregular grid
heading=seq(0,180,30)
speed=c(5,10,15,20,30)
mheading=matrix(heading,ncol=length(heading),nrow=length(speed),byrow=TRUE)
mspeed=matrix(speed,ncol=length(heading),nrow=length(speed),byrow=FALSE)
mag=mheading+mspeed
x=sin(mheading*pi/180)*mspeed
y=cos(mheading*pi/180)*mspeed
z=mag
library(akima)
df<-data.frame(x=x,y=y,z=z)
# interpolation
fld <- with(df, interp(x = x, y = y, z = z,
xo=seq(min(x),max(x),length=100),
yo=seq(min(y),max(y),length=100)))
filled.contour(x = fld$x,
y = fld$y,
z = fld$z,
color.palette =
colorRampPalette(c("white", "blue")),
xlab = "",
ylab = "",
main = "Max",
key.title = title(main = "Value", cex.main = 1),
asp=1,xlim=c(0,40),ylim=c(-30,30))
contour(x = fld$x,
y = fld$y,
z = fld$z,
color.palette =
colorRampPalette(c("white", "blue")),
xlab = "",
ylab = "",
asp=1,xlim=c(0,40),ylim=c(-30,30), add=TRUE)
Following this link, produces the following code / plot. This is "better", but there are still problems. Why is there interpolated data inside of the minimum speed radius (5), and why doesn't the contour fill/lines extend to the outer radius especially near 90 degrees?
contours=TRUE # Add contours to the plotted surface
legend=TRUE # Plot a surface data legend?
axes=TRUE # Plot axes?
points=TRUE # Plot individual data points
extrapolate=FALSE # Should we extrapolate outside data points?
single_point_overlay=0
outer.radius=30
spatial_res=1000 #Resolution of fitted surface
interp.type = 1
circle.rads <- pretty(c(0,outer.radius))
heading=seq(0,180,30)
speed=c(5,10,15,20,30)
mheading=matrix(heading,ncol=length(heading),nrow=length(speed),byrow=TRUE)
mspeed=matrix(speed,ncol=length(heading),nrow=length(speed),byrow=FALSE)
mag=mheading+mspeed
x=sin(mheading*pi/180)*mspeed
y=cos(mheading*pi/180)*mspeed
z=mag
extrapolate=FALSE # Should we extrapolate outside data points?
contour_levels = 8
col_levels=contour_levels
col_breaks_source=1
contour_breaks_source = 1
col = rev(heat.colors(col_levels))
minitics <- seq(-outer.radius, outer.radius, length.out = spatial_res)
xmini <- seq(min(x),max(x),length=spatial_res)
ymini <- seq(min(y),max(y),length=spatial_res)
# interpolate the data
if (interp.type ==1 ){
# Interp <- akima:::interp(x = x, y = y, z = z,
# extrap = extrapolate,
# xo = xmini,
# yo = ymini,
# linear = FALSE)
# Mat <- Interp[[3]]
df<-data.frame(x=x,y=y,z=z)
# interpolation
fld <- with(df, akima:::interp(x = x, y = y, z = z,
xo=xmini,
yo=ymini))
Mat_x <- fld[[1]]
Mat_y <- fld[[2]]
Mat_z <- fld[[3]]
} else if (interp.type == 2){
library(fields)
grid.list = list(x=minitics,y=minitics)
t = Tps(cbind(x,y),z,lambda=lambda)
tmp = predict.surface(t,grid.list,extrap=extrapolate)
Mat_z = tmp$z
# mark cells outside circle as NA
markNA <- matrix(minitics, ncol = spatial_res, nrow = spatial_res)
Mat_x <- markNA
Mat_y <- t(markNA)
} else {stop("interp.type value not valid")}
#
Mat_z[!(sqrt(Mat_x ^ 2 + Mat_y ^ 2) <= max(speed)*1.1)] <- NA
Mat_z[!(sqrt(Mat_x ^ 2 + Mat_y ^ 2) >= min(speed))] <- NA # <- SHOULD REMOVE INNER DATA
### Set contour_breaks based on requested source
if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 1)){
# contour_breaks = seq(min(z,na.rm=TRUE),max(z,na.rm=TRUE),
# by=(max(z,na.rm=TRUE)-min(z,na.rm=TRUE))/(contour_levels-1))
contour_breaks = seq(min(z,na.rm=TRUE),max(z,na.rm=TRUE),length.out = contour_levels+1)
}else if ((length(contour_breaks_source == 1)) & (contour_breaks_source[1] == 2)){
contour_breaks = seq(min(Mat_z,na.rm=TRUE),max(Mat_z,na.rm=TRUE),
by=(max(Mat_z,na.rm=TRUE)-min(Mat_z,na.rm=TRUE))/(contour_levels-1))
} else if ((length(contour_breaks_source) == 2) & (is.numeric(contour_breaks_source))){
contour_breaks = pretty(contour_breaks_source,n=contour_levels)
contour_breaks = seq(contour_breaks_source[1],contour_breaks_source[2],
by=(contour_breaks_source[2]-contour_breaks_source[1])/(contour_levels-1))
}else {stop("Invalid selection for \"contour_breaks_source\"")}
### Set color breaks based on requested source
if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 1))
{zlim=c(min(z,na.rm=TRUE),max(z,na.rm=TRUE))} else if ((length(col_breaks_source) == 1) & (col_breaks_source[1] == 2))
{zlim=c(min(Mat_z,na.rm=TRUE),max(Mat_z,na.rm=TRUE))} else if ((length(col_breaks_source) == 2) & (is.numeric(col_breaks_source)))
{zlim=col_breaks_source} else {stop("Invalid selection for \"col_breaks_source\"")}
# begin plot
Mat_plot = Mat_z
Mat_plot[which(Mat_plot<zlim[1])]=zlim[1]
Mat_plot[which(Mat_plot>zlim[2])]=zlim[2]
image(x = Mat_x, y = Mat_y, Mat_plot ,
useRaster = TRUE, asp = 1, axes = FALSE, xlab = "", ylab = "", zlim = zlim, col = col)
# add contours if desired
if (contours){
CL <- contourLines(x = Mat_x, y = Mat_y, Mat_z, levels = contour_breaks)
A <- lapply(CL, function(xy){
lines(xy$x, xy$y, col = gray(.2), lwd = .5, asp=1)
})
}
# add interpolated point if desired
if (points){
points(x,y,pch=4)
}
# add overlay point (used for trained image marking) if desired
if (single_point_overlay!=0){
points(x[single_point_overlay],y[single_point_overlay],pch=0)
}
# add radial axes if desired
if (axes){
# internals for axis markup
RMat <- function(radians){
matrix(c(cos(radians), sin(radians), -sin(radians), cos(radians)), ncol = 2)
# matrix(c(sin(radians), -cos(radians), cos(radians), sin(radians)), ncol = 2)
}
circle <- function(x, y, rad = 1, nvert = 500, angle=360){
rads <- seq(0,angle*pi/180,length.out = nvert)
# xcoords <- cos(rads) * rad + x
# ycoords <- sin(rads) * rad + y
xcoords=sin(rads)*rad + x
ycoords=cos(rads)*rad + y
cbind(xcoords, ycoords)
}
# draw circles
if (missing(circle.rads)){
circle.rads <- pretty(c(0,outer.radius))
}
endAngle = 180
for (i in circle.rads){
lines(circle(0, 0, i, angle = endAngle), col = "#66666650")
}
# put on radial spoke axes:
axis.degs <- c(0, 30, 60, 90, 120, 150)
# axis.rads <- c(0, pi / 6, pi / 3, pi / 2, 2 * pi / 3, 5 * pi / 6)
axis.rads <- axis.degs * pi/180
r.labs <- c(90, 60, 30, 0, 330, 300)
l.labs <- c(270, 240, 210, 180, 150, 120)
for (i in 1:length(axis.rads)){
if (axis.degs[i]==0) {
# endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, -1, 0) * outer.radius,ncol = 2)))
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, 0, 0) * outer.radius,ncol = 2)))
} else if (0 < axis.degs[i] & axis.degs[i] < 90) {
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(1, 0, 0, 0) * outer.radius,ncol = 2)))
} else {
endpoints <- zapsmall(c(RMat(axis.rads[i]) %*% matrix(c(0, 0, -1, 0) * outer.radius,ncol = 2)))
}
segments(endpoints[1], endpoints[2], endpoints[3], endpoints[4], col = "#66666650")
endpoints <- c(RMat(axis.rads[i]) %*% matrix(c(1.1, 0, -1.1, 0) * outer.radius, ncol = 2))
lab1 <- bquote(.(r.labs[i]) * degree)
lab2 <- bquote(.(l.labs[i]) * degree)
if (0 <= r.labs[i] & r.labs[i] <= 180) text(endpoints[1], endpoints[2], lab1, xpd = TRUE)
if (0 <= l.labs[i] & l.labs[i] <= 180) text(endpoints[3], endpoints[4], lab2, xpd = TRUE)
}
# axis(2, pos = -1.25 * outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
# text( -1.26 * outer.radius, sort(union(circle.rads, -circle.rads)),sort(union(circle.rads, -circle.rads)), xpd = TRUE, pos = 2)
axis(2, pos = 0 * outer.radius, at = sort(union(circle.rads,-circle.rads)), labels = NA)
text( -0.02 * outer.radius, sort(union(circle.rads, -circle.rads)),
abs(sort(union(circle.rads, -circle.rads))),
xpd = TRUE, pos = 2)
}
# add legend if desired
# this could be sloppy if there are lots of breaks, and that's why it's optional.
# another option would be to use fields:::image.plot(), using only the legend.
# There's an example for how to do so in its documentation
if (legend){
library(fields)
image.plot(legend.only=TRUE, smallplot=c(.78,.82,.1,.8), col=col, zlim=zlim)
# ylevs <- seq(-outer.radius, outer.radius, length = contour_levels+ 1)
# #ylevs <- seq(-outer.radius, outer.radius, length = length(contour_breaks))
# rect(1.2 * outer.radius, ylevs[1:(length(ylevs) - 1)], 1.3 * outer.radius, ylevs[2:length(ylevs)], col = col, border = NA, xpd = TRUE)
# rect(1.2 * outer.radius, min(ylevs), 1.3 * outer.radius, max(ylevs), border = "#66666650", xpd = TRUE)
# text(1.3 * outer.radius, ylevs[seq(1,length(ylevs),length.out=length(contour_breaks))],round(contour_breaks, 1), pos = 4, xpd = TRUE)
}
The contours and colours do not align because filled.contour produces two plots (legend and contour). After plotting, these coordinate systems are lost. (?filled.contour). This can be solved by adding the relevant commands to the plot.axes argument. Semi-circles can be drawn with draw.arc from the plotrix package, spokes with segments. The zone within a minimum radius can be covered by white segments to represent no data.
# min distance of contours lines from center
min_dist=5
# position of spokes (degrees)
spk = seq(0,180,30)
filled.contour(x = fld$x,
y = fld$y,
z = fld$z,
color.palette = colorRampPalette(c("white", "blue")),
xlab = "",
ylab = "",
main = "Max",
key.title = title(main = "Value", cex.main = 1),
asp=1, xlim=c(0,40), ylim=c(-30,30), frame.plot=F,
plot.axes = {contour(fld$x, fld$y, fld$z , add=T, levels = seq(0,max(fld$z, na.rm=T),30), drawlabels=F, col=2);
# semi circles
draw.arc(x=0,y=0,radius = (1:3)*10, deg1=90, deg2=-90, col='grey');
# cover zone within minimum radius with (draw many closely spaced white lines
segments(x0 = 0, y0 = 0, x1 = sin((0:180)*pi/180)*min_dist, y1 = cos((0:180)*pi/180)*min_dist, col='white');
# spokes with labels
segments(x0 = 0, y0 = 0, x1 = sin(spk*pi/180)*30, y1 = cos(spk*pi/180)*30, col='grey');
text(x = sin(spk*pi/180)*30, y=cos(spk*pi/180)*30, labels = spk, pos=4, cex=0.6, xpd=NA)
# data points
points(x,y, pch=16, cex=0.6);
# x axis
axis(1);
# modified y axis
axis(2, at = axisTicks(range(y), log=F), labels = abs(axisTicks(range(y), log=F)), pos = 0);
}
)

Resources