I am currently using the 'Akima' interp routine in order to do 2d linear interpolation. I'm currently trying to do linear interpolations as best as I can by excluding the bad datpoints and interpolated values that depend upon them. I don't want to do any spline fitting just linear interpolation.
I can think of two ways to do this using the existing akima package;
by partitioning the 2d datasets into valid subsets that do not have missing data points, and then interpolating on each, and then merging the results.
or by setting the missing value to a nonsense value, (-1.0 in my case), and then marking the results where any interpolated value NA. Unfortunately, the indices of the interpolation nodes do not appear to be returned, so I'll have to find these nodes myself in which case I should just write my own routine.
Each is a a bit of a pain and I'm sure there must be a better way or there must be a package to do one of the above as this I'm sure is a common problems that many have had.
Any recommendations for an alternative interpolation routine or method to use akima interp is greatly appreciated.
Bob
Have you looked at the Amelia package?
Related
Is there a way of calculating or estimating the area under the curve as an external metric, using base R, from confusion matrices alone?
If not, how would I do it, given the clustering object?
e.g. we can start from
cutree(hclust(dist(iris[,1:4])),method="average"),3))
or, from a diagonal-maximized version of
table(iris$Species, cutree(hclust(dist(iris[,1:4])),method="average"),3))
the latter being the confusion matrix. I would much, much prefer a solution that goes from the confusion matrix but if it's impossible we can use the clustering object itself.
I read the comments here: Calculate AUC in R? -- the top solution looks good, but it's unclear to me how to generalise it for multi-class data like iris.
(No packages, obviously, I want to find out how to do it by hand in base R)
I have a data set correponding to observations of a real valued function of two variables, that is (z,x,y), where z=f(x,y).
I need to compute the cross derivative of f at the available data points, that is df/dxdy.
The function gradient from the pracma package offers a solution for this question but only when the observed points (x,y) come from a regular grid.
Is there any code available to do that ?
Best regards
I´ve a question regarding k-means clustering. We have a dataset with 120,000 observations and need to compute a k-means cluster solution with R. The problem is that k-means usually use Euclidean Distance. Our dataset consists of 3 continous variables, 11 ordinal (Likert 0-5) (i think it would be okay to handle them like continous) and 5 binary variables. Do you have any suggestion for a distance measure that we can use for our k-means approach with regards to the "large" dataset? We stick to k-means, so I really hope one of you has a good idea.
Cheers,
Martin
One approach would be to normalize the features and then just use the 11-dimensional
Euclidean Distance. Cast the binary values to 0/1 (Well, it's R, so it does that anyway) and go from there.
I don't see an immediate problem with this method other than k-means in 11 dimensions will definitely be hard to interpret. You could try to use a dimensionality reduction technique and hopefully make the k-means output easier to read, but you know way more about the data set than we ever could, so our ability to help you is limited.
You can certainly encode there binary variables as 0,1 too.
It is a best practise in statistics to not treat likert scale variables as numeric, because of that uneven distribution.
But I don't you will get meaningful k-means clusters. That algorithm is all about computing means. That makes sense on continuous variables. Discrete variables usually lack "resolution" for this to work well. Three mean then degrades to a "frequency" and then the data should be handled very differently.
Do not choose the problem by the hammer. Maybe your data is not a nail; and even if you'd like to make it with kmeans, it won't solve your problem... Instead, formulate your problem, then choose the right tool. So given your data, what is a good cluster? Until you have an equation that measures this, handing the data won't solve anything.
Encoding the variables to binary will not solve the underlying problem. Rather, it will only aid in increasing the data dimensionality, an added burden. It's best practice in statistics to not alter the original data to any other form like continuous to categorical or vice versa. However, if you are doing so, i.e. the data conversion then it must be in sync with the question to solve as well as you must provide valid justification.
Continuing further, as others have stated, try to reduce the dimensionality of the dataset first. Check for issues like, missing values, outliers, zero variance, principal component analysis (continuous variables), correspondence analysis (for categorical variables) etc. This can help you reduce the dimensionality. After all, data preprocessing tasks constitute 80% of analysis.
Regarding the distance measure for mixed data type, you do understand the mean in k will work only for continuous variable. So, I do not understand the logic of using the algorithm k-means for mixed datatypes?
Consider choosing other algorithm like k-modes. k-modes is an extension of k-means. Instead of distances it uses dissimilarities (that is, quantification of the total mismatches between two objects: the smaller this number, the more similar the two objects). And instead of means, it uses modes. A mode is a vector of elements that minimizes the dissimilarities between the vector itself and each object of the data.
Mixture models can be used to cluster mixed data.
You can use the R package VarSelLCM which models, within each cluster, the continuous variables by Gaussian distributions and the ordinal/binary variables.
Moreover, missing values can be managed by the model at hand.
A tutorial is available at: http://varsellcm.r-forge.r-project.org/
Could you please help me to add zooming option for wordcloud
Please find reproducible example #
´http://shiny.rstudio.com/gallery/word-cloud.html´
I tried to incorporate rbokeh and plotly but couldnt find wordcloud equivalent render function
Additionally, I found ECharts from github #
´https://github.com/XD-DENG/ECharts2Shiny/tree/8ac690a8039abc2334ec06f394ba97498b518e81´
But incorporating this ECharts are also not convenient for really zoom.
Thanks in advance,
Abi
Normalisation is required only if the predictors are not meant to be comparable on the original scaling. There's no rule that says you must normalize.
PCA is a statistical method that gives you a new linear transformation. By itself, it loses nothing. All it does is to give you new principal components.
You lose information only if you choose a subset of those principal components.
Usually PCA includes centering the data as a Pre Process Step.
PCA only arranges the data in its own Axis (Eigne Vectors) System.
If you use all axis you lose no information.
Yet, usually we want to apply Dimensionality Reduction, intuitively, having less coordinates for the data.
This process means projecting the data into Sub Space which is spanned by only some of the Eigen Vectors of the data.
If one chose wisely the number of vectors one might end up with a significant reduction in the number of dimensions of the data with negligible loss of data / information.
The way to do so is by choosing Eigen Vectors which their Eigen Values sum to most of the data power.
PCA itself is invertible, so lossless.
But:
It is common to drop some components, which will cause a loss of information.
Numerical issues may cause a loss in precision.
We do a lot of full field 3D numerical simulations (CFD, FEA, etc.). The solutions take a long time to run. We often interpolate from solutions rather than rerun every case. We also interpolate between multiple solutions, which leads to even higher dimensional interpolation (like adding time, so x,y,z,t,v).
Matlab does a great job of reading data V at irregular grid of X,Y,Z coordinates, and interpolating from V using griddata, scatterdInterpolan, and/or TriScatteredInterp. For a variety of reasons, I've switched to R. This remains one key area I've not been able to find as good R equivalent. 'akima' only does x,y,V (not, x,y,z,V, much less even higher dimensions like x,y,z,t,v).
The next best thing I've found has been 'krigging'. But krigging behaves more like model fitting and projection, and often does not behave well between irregular grid points. So it's not nearly as robust as simple direct linear interpolation.
Matlab has had griddata for several decades. It's hard to believe R doesn't have an equivalent out there. Any suggestions? Or is there at least a way to use krigging to yield effectively the same result as a direct linear interpolation?
Jonathan
You might start by looking at the package "tripack" to do Delaunay triangulation, which gives you the first step in duplicating scatteredInterpolant().
R interpp() is equivalent to MATLAB scatteredInterpolant().