1-element Array to scalar in Julia - vector

Multiplying a row and a column vector, I was expecting the result to be scalar, but it is a 1-dimensional, 1-element Array:
julia> [1 2 3] * [4; 5; 6]
1-element Array{Int64,1}:
32
Question 1: What is the rationale behind this?
Question 2: Accepting this as a quirk of Julia, I want to convert the 1-element Array into a scalar. Taking the first element with [1] is an option, but not very readable. What is the idiosyncratic way to do this?

Every expression could be acted on, so you can use
([1 2 3] * [4; 5; 6])[1]
to get the first (and only value out).
There are major performance reasons for this: type-stability. Basically, in a compiled language you cannot change your types around without doing a bunch of conversions. Julia is a bit smarter, though if you do a bunch of conversions, then your code will be slower since the compiler will have to keep around a lot of "kruft" just in case you have the wrong type. Thus by ensuring type-stability, the compiler can know in advance what the type will be, and do a lot more optimizations. This is one of the performance tips. Indeed, Julia is fast and reaches C speeds BECAUSE of multiple dispatch and type-stability, and so it should be respected.
Array * Array gives out an array. In order for that to be type-stable, it must always give out an array. Otherwise the compiler needs to put extra code to check if that variable is an array or not... at every place where the output is used! So then you should use * with arrays to get arrays out. If you want to get a scalar out, the easy answer is use the dot function:
dot([1;2;3],[4;5;6])
Of course I could've just said that, but it's good to know the "why" since type-stability is such an important idea for performant code.

Related

Failure to report number that is too small

I did the following calculations in Julia
z = LinRange(-0.09025000000000001,0.19025000000000003,5)
d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051 .* (similar(z) .*0 .+1))
minimum(cdf.(d, (z[3]+z[2])/2))
The problem I have is that the last code sometimes gives me the correct result 4.418051841202834e-239, sometimes reports the error DomainError with NaN: Normal: the condition σ >= zero(σ) is not satisfied. I think this is because 4.418051841202834e-239 is too small. But I was wondering why my code can give me different results.
In addition to points mentioned by others, here are a few more:
Firstly, don't use LinRange when numerical accuracy is of importance. This is what the range function is for. LinRange can be used when numerical precision is of lesser importance, since it is faster. From the docstring of range:
Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see the LinRange constructor.
Example:
julia> LinRange(-0.09025000000000001,0.19025000000000003,5) .- range(-0.09025000000000001,0.19025000000000003,5)
0.0:-3.469446951953614e-18:-1.3877787807814457e-17
Secondly, this is a pretty terrible way to create a vector of a certain value:
0.0051 .* (similar(z) .*0 .+1)
Other's have mentioned ones, etc. but I think it's better to use fill
fill(0.0051, size(z))
which directly fills the array with the right value. Perhaps one should use convert(eltype(z), 0.0051) inside fill.
Thirdly, don't create this vector at all! You use broadcasting, so just use the scalar value:
d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051) # look! just a scalar!
This is how broadcasting works, it expands singleton dimensions implicitly to match other arguments (without actually wasting that memory).
Much of the point of broadcasting is that you don't need to create that sort of 'dummy arrays' anymore. If you find yourself doing that, give it another think; constant-valued arrays are inherently wasteful, and you shouldn't need to create them.
There are two problems:
Noted by #Dan Getz: similar does no initialize the values and quite often unused areas of memory have values corresponding to NaN. In that case multiplication by 0 does not help since NaN * 0 == NaN. Instead you want to have ones(eltype(z),size(z))
you need to use higher precision than Float64. BigFloat is one way to go - just you need to remember to call setprecision(BigFloat, 128) so you actually control how many bits you use. However, much more time-efficient solution (if you run computations at scale) will be to use a dedicated package such as DoubleFloats.
Sample corrected code using DoubleFloats below:
julia> z = LinRange(df64"-0.09025000000000001",df64"0.19025000000000003",5)
5-element LinRange{Double64, Int64}:
-0.09025000000000001,-0.020125,0.05000000000000001,0.12012500000000002,0.19025000000000003
julia> d = Normal.(0.05*(1-0.95) .+ 0.95.*z .- 0.0051^2/2, 0.0051 .* ones(eltype(z),size(z)))
5-element Vector{Normal{Double64}}:
Normal{Double64}(μ=-0.083250505, σ=0.0051)
Normal{Double64}(μ=-0.016631754999999998, σ=0.0051)
Normal{Double64}(μ=0.049986995000000006, σ=0.0051)
Normal{Double64}(μ=0.11660574500000001, σ=0.0051)
Normal{Double64}(μ=0.18322449500000001, σ=0.0051)
julia> minimum(cdf.(d, (z[3]+z[2])/2))
4.418051841203009e-239
The problem in the code is similar(z) which produces a vector with undefined entries and is used without initialization. Use ones(length(z)) instead.

What are some different ways to do a for loop in Julia 1.0+?

I am looking for different ways of writing for loops in Julia! I know this is a basic question but I'm wondering what some of the different options are and if there are advantages/disadvantages with respect to performance.
For loop
Pro: fully flexible has break and continue
Con: no return, must specify iterator at start
While loop
Pro: fully flexible has break and continue
Con: no return, if iterator must be handled manually
Label+goto
Please don't use this for loops
Generator comprehension/Vector comprehension
Pro: Has return value, continue is expressed with filter clause, comes in lazy (generator) and eager forms (vector), can create multidimensional return vale
Con: really ugly for anything long, no break
Broadcast
Pro: express transform of multiple input susictly, has return value with output structure matching what it should be. Can be expressed with just a dot and supports loop fusion.
Con: no break no contine. Writing body means writing a function. Wrapping things you want to broadcast as scalar in Ref is a bit ugly
Map/pmap/asyncmap
Written in do-block form
Pro: can easily change to run distributed or asynchronously, had a return value
Con: no break, no continue
foreach function
It is a lot like map but no return value. So save on allocating that.
Other than that same pros and cons
This is straight from the Julia docs:
The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like the above while loop does is so common, it can be expressed more concisely with a for loop:
julia> for i = 1:5
println(i)
end
1
2
3
4
5
Here the 1:5 is a range object, representing the sequence of numbers 1, 2, 3, 4, 5. The for loop iterates through these values, assigning each one in turn to the variable i. One rather important distinction between the previous while loop form and the for loop form is the scope during which the variable is visible. If the variable i has not been introduced in another scope, in the for loop form, it is visible only inside of the for loop, and not outside/afterward. You'll either need a new interactive session instance or a different variable name to test this:
julia> for j = 1:5
println(j)
end
1
2
3
4
5
julia> j
ERROR: UndefVarError: j not defined
See Scope of Variables for a detailed explanation of the variable scope and how it works in Julia.
In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully equivalent) keyword in or ∈ is typically used instead of =, since it makes the code read more clearly:
julia> for i in [1,4,0]
println(i)
end
1
4
0
julia> for s ∈ ["foo","bar","baz"]
println(s)
end
foo
bar
baz
Various types of iterable containers will be introduced and discussed in later sections of the manual (see, e.g., Multi-dimensional Arrays).

Reshaping 1d array to 2D pointer array Fortran

I have a pointer uvw(:,:) which is two-dimensional, and I got a 1d buffer array x(:).
Now I need to point uvw(1,:)=>x(1:ncell) and uvw(2,:)=>x(ncell+1:ncell*2) etc.
I made a very simple example. I know that array of pointers does not work, but does anybody have an idea how this can be worked around?
PS: For a pragmatic reason I do not want to wrap my uvw with a declared type. ( i am changing some bit of code, and need uvw as 2D pointer. Currently is an array, and my idea is to avoid changing the way uvw is being used as it being used thousands of times)
program test
real, allocatable,target :: x(:)
real, pointer :: ptr(:,:)
allocate(x(100) )
x = 1.
ptr(1,:) => x(1:10)
end program
The error message says:
`error #8524: The syntax of this data pointer assignment is incorrect:
either 'bound spec' or 'bound remapping' is expected in this context.
[1]
ptr(1,:) => x(1:10)
----^`
You are trying to perform pointer bounds remapping, but you have the incorrect syntax and approach.
Pointer bounds remapping is a way to have the shape of the pointer different from that of the target. In particular, the rank of the pointer and target may differ. However, in such an assignment it is necessary to explicitly specify the lower and upper bounds of the remapping; it isn't sufficient to use : by itself.
Also, you'll need to assign the whole pointer in one go. That is, you can't have "the first ten elements point to this slice, the next ten to this slice" and so on in multiple statements.
The assignment statement would be
ptr(1:10,1:10) => x
Note, that this also means that you can't actually have what you want. You are asking for the elements ptr(1,1:10) to correspond to x(1:10) and ptr(2,2:10) to correspond to x(11:20). That isn't possible: the array elements must match in order: ptr(1:10,1) being the first ten elements of ptr must instead be associated with the first ten elements x(1:10). The corrected pointer assignment above has this.
If you prefer avoiding a pointer, then the UNION/MAP is an option depending on compiler. It was added to gfortran a while ago... then you can think of the array as a rank=2 but also use the vector (Rank=1) for SIMD operations.
All this assumes that one wants to avoid pointers...

How can I retrieve an object by id in Julia

In Julia, say I have an object_id for a variable but have forgotten its name, how can I retrieve the object using the id?
I.e. I want the inverse of some_id = object_id(some_object).
As #DanGetz says in the comments, object_id is a hash function and is designed not to be invertible. #phg is also correct that ObjectIdDict is intended precisely for this purpose (it is documented although not discussed much in the manual):
ObjectIdDict([itr])
ObjectIdDict() constructs a hash table where the keys are (always)
object identities. Unlike Dict it is not parameterized on its key and
value type and thus its eltype is always Pair{Any,Any}.
See Dict for further help.
In other words, it hashes objects by === using object_id as a hash function. If you have an ObjectIdDict and you use the objects you encounter as the keys into it, then you can keep them around and recover those objects later by taking them out of the ObjectIdDict.
However, it sounds like you want to do this without the explicit ObjectIdDict just by asking which object ever created has a given object_id. If so, consider this thought experiment: if every object were always recoverable from its object_id, then the system could never discard any object, since it would always be possible for a program to ask for that object by ID. So you would never be able to collect any garbage, and the memory usage of every program would rapidly expand to use all of your RAM and disk space. This is equivalent to having a single global ObjectIdDict which you put every object ever created into. So inverting the object_id function that way would require never deallocating any objects, which means you'd need unbounded memory.
Even if we had infinite memory, there are deeper problems. What does it mean for an object to exist? In the presence of an optimizing compiler, this question doesn't have a clear-cut answer. It is often the case that an object appears, from the programmer's perspective, to be created and operated on, but in reality – i.e. from the hardware's perspective – it is never created. Consider this function which constructs a complex number and then uses it for a simple computation:
julia> function f(y::Real)
z = Complex(0,y)
w = 2z*im
return real(w)
end
f (generic function with 1 method)
julia> foo(123)
-246
From the programmer's perspective, this constructs the complex number z and then constructs 2z, then 2z*im, and finally constructs real(2z*im) and returns that value. So all of those values should be inserted into the "Great ObjectIdDict in the Sky". But are they really constructed? Here's the LLVM code for this function applied to an Int:
julia> #code_llvm foo(123)
define i64 #julia_foo_60833(i64) #0 !dbg !5 {
top:
%1 = shl i64 %0, 1
%2 = sub i64 0, %1
ret i64 %2
}
No Complex values are constructed at all! Instead, all of the work is inlined and eliminated instead of actually being done. The whole computation boils down to just doubling the argument (by shifting it left one bit) and negating it (by subtracting it from zero). This optimization can be done first and foremost because the intermediate steps have no observable side effects. The compiler knows that there's no way to tell the difference between actually constructing complex values and operating on them and just doing a couple of integer ops – as long as the end result is always the same. Implicit in the idea of a "Great ObjectIdDict in the Sky" is the assumption that all objects that seem to be constructed actually are constructed and inserted into a large, permanent data structure – which is a massive side effect. So not only is recovering objects from their IDs incompatible with garbage collection, it's also incompatible with almost every conceivable program optimization.
The only other way one could conceive of inverting object_id would be to compute its inverse image on demand instead of saving objects as they are created. That would solve both the memory and optimization problems. Of course, it isn't possible since there are infinitely many possible objects but only a finite number of object IDs. You are vanishingly unlikely to actually encounter two objects with the same ID in a program, but the finiteness of the ID space means that inverting the hash function is impossible in principle since the preimage of each ID value contains an infinite number of potential objects.
I've probably refuted the possibility of an inverse object_id function far more thoroughly than necessary, but it led to some interesting thought experiments, and I hope it's been helpful – or at least thought provoking. The practical answer is that there is no way to get around explicitly stashing every object you might want to get back later in an ObjectIdDict.

modifying an element of a list in-place in J, can it be done?

I have been playing with an implementation of lookandsay (OEIS A005150) in J. I have made two versions, both very simple, using while. type control structures. One recurs, the other loops. Because I am compulsive, I started running comparative timing on the versions.
look and say is the sequence 1 11 21 1211 111221 that s, one one, two ones, etc.
For early elements of the list (up to around 20) the looping version wins, but only by a tiny amount. Timings around 30 cause the recursive version to win, by a large enough amount that the recursive version might be preferred if the stack space were adequate to support it. I looked at why, and I believe that it has to do with handling intermediate results. The 30th number in the sequence has 5808 digits. (32nd number, 9898 digits, 34th, 16774.)
When you are doing the problem with recursion, you can hold the intermediate results in the recursive call, and the unstacking at the end builds the results so that there is minimal handling of the results.
In the list version, you need a variable to hold the result. Every loop iteration causes you to need to add two elements to the result.
The problem, as I see it, is that I can't find any way in J to modify an extant array without completely reassigning it. So I am saying
try. o =. o,e,(0&{y) catch. o =. e,(0&{y) end.
to put an element into o where o might not have a value when we start. That may be notably slower than
o =. i.0
.
.
.
o =. (,o),e,(0&{y)
The point is that the result gets the wrong shape without the ravels, or so it seems. It is inheriting a shape from i.0 somehow.
But even functions like } amend don't modify a list, they return a list that has a modification made to it, and if you want to save the list you need to assign it. As the size of the assigned list increases (as you walk the the number from the beginning to the end making the next number) the assignment seems to take more time and more time. This assignment is really the only thing I can see that would make element 32, 9898 digits, take less time in the recursive version while element 20 (408 digits) takes less time in the loopy version.
The recursive version builds the return with:
e,(0&{y),(,lookandsay e }. y)
The above line is both the return line from the function and the recursion, so the whole return vector gets built at once as the call gets to the end of the string and everything unstacks.
In APL I thought that one could say something on the order of:
a[1+rho a] <- new element
But when I try this in NARS2000 I find that it causes an index error. I don't have access to any other APL, I might be remembering this idiom from APL Plus, I doubt it worked this way in APL\360 or APL\1130. I might be misremembering it completely.
I can find no way to do that in J. It might be that there is no way to do that, but the next thought is to pre-allocate an array that could hold results, and to change individual entries. I see no way to do that either - that is, J does not seem to support the APL idiom:
a<- iota 5
a[3] <- -1
Is this one of those side effect things that is disallowed because of language purity?
Does the interpreter recognize a=. a,foo or some of its variants as a thing that it should fastpath to a[>:#a]=.foo internally?
This is the recursive version, just for the heck of it. I have tried a bunch of different versions and I believe that the longer the program, the slower, and generally, the more complex, the slower. Generally, the program can be chained so that if you want the nth number you can do lookandsay^: n ] y. I have tried a number of optimizations, but the problem I have is that I can't tell what environment I am sending my output into. If I could tell that I was sending it to the next iteration of the program I would send it as an array of digits rather than as a big number.
I also suspect that if I could figure out how to make a tacit version of the code, it would run faster, based on my finding that when I add something to the code that should make it shorter, it runs longer.
lookandsay=: 3 : 0
if. 0 = # ,y do. return. end. NB. return on empty argument
if. 1 ~: ##$ y do. NB. convert rank 0 argument to list of digits
y =. (10&#.^:_1) x: y
f =. 1
assert. 1 = ##$ y NB. the converted argument must be rank 1
else.
NB. yw =. y
f =. 0
end.
NB. e should be a count of the digits that match the leading digit.
e=.+/*./\y=0&{y
if. f do.
o=. e,(0&{y),(,lookandsay e }. y)
assert. e = 0&{ o
10&#. x: o
return.
else.
e,(0&{y),(,lookandsay e }. y)
return.
end.
)
I was interested in the characteristics of the numbers produced. I found that if you start with a 1, the numerals never get higher than 3. If you start with a numeral higher than 3, it will survive as a singleton, and you can also get a number into the generated numbers by starting with something like 888888888 which will generate a number with one 9 in it and a single 8 at the end of the number. But other than the singletons, no digit gets higher than 3.
Edit:
I did some more measuring. I had originally written the program to accept either a vector or a scalar, the idea being that internally I'd work with a vector. I had thought about passing a vector from one layer of code to the other, and I still might using a left argument to control code. With I pass the top level a vector the code runs enormously faster, so my guess is that most of the cpu is being eaten by converting very long numbers from vectors to digits. The recursive routine always passes down a vector when it recurs which might be why it is almost as fast as the loop.
That does not change my question.
I have an answer for this which I can't post for three hours. I will post it then, please don't do a ton of research to answer it.
assignments like
arr=. 'z' 15} arr
are executed in place. (See JWiki article for other supported in-place operations)
Interpreter determines that only small portion of arr is updated and does not create entire new list to reassign.
What happens in your case is not that array is being reassigned, but that it grows many times in small increments, causing memory allocation and reallocation.
If you preallocate (by assigning it some large chunk of data), then you can modify it with } without too much penalty.
After I asked this question, to be honest, I lost track of this web site.
Yes, the answer is that the language has no form that means "update in place, but if you use two forms
x =: x , most anything
or
x =: most anything } x
then the interpreter recognizes those as special and does update in place unless it can't. There are a number of other specials recognized by the interpreter, like:
199(1000&|#^)199
That combined operation is modular exponentiation. It never calculates the whole exponentiation, as
199(1000&|^)199
would - that just ends as _ without the #.
So it is worth reading the article on specials. I will mark someone else's answer up.
The link that sverre provided above ( http://www.jsoftware.com/jwiki/Essays/In-Place%20Operations ) shows the various operations that support modifying an existing array rather than creating a new one. They include:
myarray=: myarray,'blah'
If you are interested in a tacit version of the lookandsay sequence see this submission to RosettaCode:
las=: ,#((# , {.);.1~ 1 , 2 ~:/\ ])&.(10x&#.inv)#]^:(1+i.#[)
5 las 1
11 21 1211 111221 312211

Resources