I wish to characterize a dynamic graph based on the frequency of edges being reformed between vertices and the duration between these relinking instances. I refer to such a measure as 'link repetition'. A high value would indicate that newly formed edges are often reconnecting vertices that were connected recently. A low value would indicate that new edges are being formed between new pairs of vertices, or non recent neighbors.
I have searched a while for a measure of this sort but have found mostly measures dealing with new edges that aren't ever removed. A reference to an existing dynamic graph measure would be ideal. My current solution is just the inverse 'time since last link between i and j' averaged over number of timesteps, but I would like to stick with an established solution if it exists.
Can you have a counter matrix that increments each time links are reformed between nodes of a graph then base your measures off of that.
Related
My graph is as follows:
I need to find a maximum weight subgraph.
The problem is as follows:
There are n Vectex clusters, and in every Vextex cluster, there are some vertexes. For two vertexes in different Vertex cluster, there is a weighted edge, and in the same Vextex cluster, there is no edge among vertexes. Now I
want to find a maximum weight subgraph by finding only one vertex in each
Vertex cluster. And the total weight is computed by adding all weights of the edges between the selected vertex. I add a picture to explain the problem. Now I know how to model this problem by ILP method. However, I do not know how to solve it by an approximation algorithm and how to get its approximation ratio.
Could you give some solutions and suggestions?
Thank you very much. If any unclear points in this description,
please feel free to ask.
I do not think you can find an alpha-approx for this problem, for any alpha. That is because if such an approximation exists, then it would also prove that the unique games conjecture(UGC) is false. And disproving (or proving) the UGC is a rather big feat :-)
(and I'm actually among the UGC believers, so I'd say it's impossible :p)
The reduction is quite straightforward, since any UGC instance can be described as your problem, with weights of 0 or 1 on edges.
What I can see as polynomial approximation is a 1/k-approx (k the number of clusters), using a maximum weight perfect matching (PM) algorithm (we suppose the number of clusters is even, if it's odd just add a 'useless' one with 1 vertex, 0 weights everywhere).
First, you need to build a new graph. One vertex per cluster. The weight of the edge u, v has the weight max w(e) for e edge from cluster u to cluster v. Run a max weight PM on this graph.
You then can select one vertex per cluster, the one that corresponds to the edge selected in the PM.
The total weight of the solution extracted from the PM is at least as big as the weight of the PM (since it contains the edges of the PM + other edges).
And then you can conclude that this is a 1/k approx, because if there exists a solution to the problem that is more than k times bigger than the PM weight, then the PM was not maximal.
The explanation is quite short (lapidaire I'd say), tell me if there is one part you don't catch/disagree with.
Edit: Equivalence with UGC: unique label cover explained.
Think of a UGC instance. Then, every node in the UGC instance will be represented by a cluster, with as many nodes in the cluster as there are colors in the UGC instance. Then, create edge with weight 0 if they do not correspond to an edge in the UGC, or if it correspond to a 'bad color match'. If they correspond to a good color match, then give it the weight 1.
Then, if you find the optimal solution to an instance of your problem, it means it corresponds to an optimal solution to the corresponding UGC instance.
So, if UGC holds, it means it is NP-hard to approximate your problem.
Introduce a new graph G'=(V',E') as follows and then solve (or approximate) the maximum stable set problem on G'.
Corresponding to each edge a-b in E(G), introduce a vertex v_ab in V'(G') where its weight is equal to the weight of the edge a-b.
Connect all of vertices of V'(G') to each other except for the following ones.
The vertex v_ab is not connected to the vertex v_ac, where vertices b and c are in different clusters in G. In this manner, we can select both of these vertices in an stable set of G' (Hence, we can select both of the corresponding edges in G)
The vertex v_ab is not connected to the vertex v_cd, where vertices a, b, c and d are in different clusters in G. In this manner, we can select both of these vertices in an stable set of G' (Hence, we can select both of the corresponding edges in G)
Finally, I think you can find an alpha-approximation for this problem. In other words, in my opinion the Unique Games Conjecture is wrong due to the 1.999999-approximation algorithm which I proposed for the vertex cover problem.
There are many theories about calculating of graph similarity such as vertex edge overlap, jacard, co-sine, edit distance, signature similarity, lambda distance, deltacon so on. These things are based on single edge of the graph. But there are many graphs having multiple edges in real world.
Given similar two graphs like above, how could we calculate graph similarity?
Using previous graph similarity, there are only 2-dimension vector and the entry is just scalar that is number, but in multiple edge's graph, the entry should be tuple. Because there are one more actions between nodes. For the previous method, it could be called who-knows-whom schem, but latter graph, it could be said who-knows-whom*-how*. I think the previous mothods could be used for the multiple edge's graph easily, so there aren't logic or methods about it.
Thanks in advance!
There is not "the" way yo compute graph similarity.
Depending on your data and problem, very different approaches may be good. In many cases, simply merging the two edges into one makes perfect sense. For example, if I have two roads of capacity x and y to go from A to B - for many analyses this is comparable to having just one rode, with the combined capacity.
My question is with regard to the increase/decrease of the diameter of a network. I'm thinking that as one adds more nodes to an existing network, the density should effectively increase and the probability of the edges created by the new nodes could result in higher degree of clustering. If this is the case, my assumption is that the diameter of the network should decrease as we add more nodes, owing to the probability that shorter geodesic paths can now exist and become the new diameter. Am I wrong with this logic? Or is there a better explanation or perhaps something I'm missing?
Work by Leskovec, Kleinberg, and Faloutsos has examined this question specifically [1,2]. They find:
"First, graphs densify over time, with the number of edges crowing super-linearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes."
I'm trying to test some models of graph partitioning (these come from the real world, where a graph slowly self-partitions). To do this, I need to be able to uniformly randomly partition this graph into contiguous components (we are given the graph is initially connected, as well). Were the contiguity criterion not required I believe this would be the problem of randomly partitioning a set, which can be combinatorially analyzed. Does anyone know of any way to randomly partition graphs into subgraphs (i.e. randomly sample one partition), or, if no such method is known, to randomly sample a set of elements? The method of randomizing the number of partitions and then randomizing membership won't work because there are different numbers of possible partitions for each partition size.
You have to differentiate edge-cut partitioning and vertex-cut partitioning, where you divide the graph along the edges or vertices. This significantly impacts your problem as the number of different vertex-cuts is much larger than the number of edge-cuts. The reason is that you exclusively assign edges to partitions in vertex-cut - as opposed to edge-cut where you assign vertices to partitions - and there are much more edges than vertices (e.g. O(n^2) edges for n vertices). Hence, the combinatorially larger vertex-cut leads to a larger number of subgraphs that have to be checked for connectivity. A naive method for randomization is to enumerate all partitionings, iteratively select one partitioning, and check connectivity of all subgraphs in the selected partitioning. Then you just take the first one. In this case, all solutions have equal probability (uniformly random).
I have come across the same problem in work I am doing. I have two solutions to randomly partition a graph into m contiguous components:
Spanning Tree Approach. Randomly choose a spanning tree of your graph (e.g. Using Wilson's algorithm which chooses uniformly amongst all spanning trees). Then randomly select m-1 edges (without replacements) and remove them from the spanning tree. This will give m components which are each connected in the original graph.
Edge contraction approach. Randomly choose an edge and contract it, renaming the (new) vertex as the union of the two previous vertices. Repeat until you have only m vertices left. Identify each vertex with the subset of (original) vertices that were contracted into it.
Consider a graph that has weights on each of its nodes instead of between two nodes. Therefore the cost of traveling to a node would be the weight of that node.
1- How can we represent this graph?
2- Is there a minimum spanning path algorithm for this type of graph (or could we modify an existing algorithm)?
For example, consider a matrix. What path, when traveling from a certain number to another, would produce a minimum sum? (Keep in mind the graph must be directed)
if one don't want to adjust existing algorithms and use edge oriented approaches, one could transform node weights to edge weights. For every incoming edge of node v, one would save the weight of v to the edge. Thats the representation.
well, with the approach of 1. this is now easy to do with well known algorithms like MST.
You could also represent the graph as wished and hold the weight at the node. The algorithm simply didn't use Weight w = edge.weight(); it would use Weight w = edge.target().weight()
simply done. no big adjustments are necessary.
if you have to use adjacency matrix, you need a second array with node weights and in adjacency matrix are just 0 - for no edge or 1 - for an edge.
hope that helped